NASA-CR-192985

Statistical Modelling of Software Reliability

Semi-Annual Status Report No. 1

1 April 1991 through 30 September 1991

National Aeronautics and Space Administration

Grant NAG 1-1241
. G AN T
Douglas R. Miller
Principal Investigator /A/-zéyhifAZ/f

J60R6 D

// 75

(NASA-CR-192985) STATISTICAL N93-25257
MODELLING OF SOFTWARE RELIABILITY
semiannual Status Report No. 1, 1
Apr. - 30 Sep. 1991 (George Mason

Univ.) 45 p

Unclas

G3/61 0160263

Department of Operations Research and Applied Statistics
School of Information Technology and Engineering
George Mason University

Fairfax, VA 20030-4444

NASA Grant NAG 1-1241 commenced on 1 April 1991. During the
six-month period from 1 April 1991 to 30 September 1991 the
following research work in statistical modelling of software

reliability appeared:

[1) A. Sofer and D. R. Miller, "A Nonparametric Software
Reliability Growth Model," IEEE Transactions on Software

Engineering 40 (1991): 329-337.

[2] P. A. Keiller and D. R. Miller, "On the Use and the
Performance of Software Reliability Growth Models," Reliability
Engineering and system Safety 32 (1991): 95-117.

(3] M. Lyu, H. Hecht, H. Kopetz, D. Miller, J. Musa, M. Ohba,
and D. Siefert, "Research and Development Issues in Software
Reliability Engineering," Proceedings of the IEEE International
gymposium on Software Reliability Engineering (1991); 80-89.
(Reprinted in Software Engineering Notes 16,2 (1991): 23-30.)

(4] B. Littlewood and D. Miller (guest co-editors), Special
Issues on Software, Reliability Engineering and 8ystem safety,
Volume 32, Numbers 1 and 2 (1991) .

(5] B. Littlewood and D. Miller (co-editors), Software
Reliability and Safetz,;E}sevier Applied Science, London, 1991.

The above work was started with the support of NASA Grant
NAG 1-771 and was continued in the hope of receiving additional
NASA support. That support materialized as NASA Grant NAG 1-1241.
Final preparations for publication of some of the above works

were completed during the period covered by this Semi-Annual
Status Report.

Note that items [4] and [5] are essentially the same work in
different formats. Elsevier decided that it wanted to publish
the papers in the special issues [4] as a separate hardbound
volume [5] in order to reach a wider audience.

copies of [1], [2], and [3] are attached to this report as
Appendices 1, 2, and 3, respectively.

Appendix 1

A. Sofer and D. R. Miller, "A Nonparametric Software Reliability
Growth Model," I1EEE Transactions on Software Engineering 40 (1991):

329-337.

* [EEE TRANSACTIONS ON RELIABILITY, VOL. 40, NO. 3, 1991 AUGUST

A Nonparametric Software-Reliability Growth Model

Ariela Sofer

George Mason University, Fairfax
Douglas R. Miller

George Mason University, Fairfax

Key Words — Software reliability, Complete monotonicity, Non-
parametric regression, Failure rate estimation, Failure rate
extrapolation

Reader Aids —
Purpose: Present a general model
Special math needed for explanations: Statistics and linear algebra
Special math needed to use the results: Statistics
Results useful to: Software reliability theorists and analysts

Abstract — Miller & Sofer previously presented a new non-
parametric method for estimating the failure rate of a software
program. The method is based on the complete monotonicity pro-
perty of the failure rate, and uses regression to estimate the cur-
rent software-failure rate. This paper extends this completely
monotone model and demonstrates how it can also provide longer-
range predictions of reliability growth. Preliminary evaluation in-
dicates that the method is competitive with parametric approaches,
while being more robust.

1. INTRODUCTION

Suppose a program is executed for a length of time 7. Dur-
ing this time, n bugs are detected and removed when they
manifest themselves as failures. The successive failures occur
at times:

0<tf <t <..<t,<T (1)

When bugs are corrected without introducing new faults, the
program evolves into a more reliable program, hence the term
‘*reliability growth’ . Given the past software data (1) we want
to make various statistical inferences concerning the current and
future reliability of the software. In particular we are interested
in —

+ the number of failures anticipated over some future horizon
o the future failure rate after an additional specified time of

debugging.

Over the years, many competing models for software-
reliability growth have been developed, eg, Duane (6], Jelin-
ski & Moranda [8), Goel & Okumoto (7], Littlewood [9], and
Musa & Okumoto [16]. These are all parametric models, and
have a common property: complete monotonicity of the failure
rate,

PREGEDING PAGE BLANK NOT FILMED

Notation

N() (random) number of failures observed in [0,!]

M(t) E{N(r)}, mean number of failures, viz, the mean
function

r(r) dM (1) /dr,0<t, intensity function of the point process
{N(1),0=1}

The r(1) is also referred to as the failure rate of the process,
although failure intensity is probably a better name. A function
r(-) is completely monotone if and only if it has derivatives
of all orders, and they alternate in sign:

dq
(_1)0_.;(70 =0,¢t=0, q = 0,1,2,.... @)

Miller [12) has shown that software under random time-
homogeneous testing or usage with perfect fixes shows com-
pletely monotone reliability-growth, and conversely that vir-
tually all completely monotone functions can occur as intensity
functions of reliability-growth point processes. Thus, a general
approach to software-reliability growth modelling should include
the entire class of completely monotone intensities. Reliability-
growth prediction based on a single parametric family of
reliability-growth processes cannot be justified.

Miller & Sofer (13] ptEviously introduced a nonparametric
model for software-reliability growth which is based on com-
plete monotonicity of the failure rate. The method uses regres-
sion to estimate the current software failure rate. Miller & Sofer
[14] show that this method often gives estimates which have
a lower s-bias than those of certain (widely-used) parametric
methods; using Monte Carlo simulated failure data, these *‘com-
pletely monotone regression’” estimates of current failure rate
are also shown to be more robust than the estimates based on
parametric models.

Chan [4] has estimated the distribution of time-until-next-
failure for real data using completely monotone regression
estimates of current reliability. He starts with a raw estimate
which is an exponential distribution with the estimated current
failure rate and then ‘‘adapts’’ it to a more general distribution
using the procedure of Littlewood & Keiller [10]. Chan then
evaluates these estimates using criteria of Abdel-Ghaly, Chan,
Littlewood [1]. The Chan study shows that completely monotone
regression gives good estimates that are more robust than
estimates from parametric models.

This paper extends the completely monotone software
model by developing a method for providing long-range predic-
tions of reliability growth, based on the model. The paper
derives upper and lower bounds on extrapolations of the failure
rate and the mean function. These are then used to obtain
estimates for the future software failure rate and the mean future
number of failures.

0018-9529/91/0800-0329501.0021991 IEEE

330

2. NOTATION, DEFINITIONS, ASSUMPTIONS

Notation

a second order difference defined in (17)

d order of the highest difference constraint (7)

D(x,y) weighted squared distance between vectors x and y

ij dummy indices

k number of discrete time subintervals over the obser-
vation interval {0,T]

{ number of subintervals over the future prediction
horizon

M(1) mean number of failures observed in the interval {0,]

M(1) raw piecewise linear estimate of M(r)

; M(S.')

m; smoothed least squares estimate of M(s,)

n number of observed failures over the interval [0,T]

N(t) random number of failures occuring in the interval
(0.1]

{N(1),0=1} stochastic point process of the number of failures

P defined in (9) in terms of the failure rate, and in (24)
in terms of the mean function

P(j) arinstance of a third order extrapolation of the failure

rate — for j subintervals into the future
q defined in (12) in terms of the failure rate, and in (27)
in terms of the mean function

r(s) dM (1) /d, failure rate at time ¢,

#; raw estimate of the failure rate over the subinterval

r; smoothed estimate (least squares estimate satisfying
completely monotone constraints) of the failure rate
over subinterval i

5; i@, the end point of subinterval i

t time

T length of the observation interval

2 occurence time of failure i

u defined in (15) in terms of the failure rate and in (30)
in terms of the mean function

v defined in (22)

w; weight assigned to subinterval i in the least squares
equation

5 adjustment to the number of failures in subinterval &,
see (8)

Y order j backward difference operator see (35)

] T/k, length of each of the k subintervals of [0,T]; also
the length of the [subintervals in the future prediction
horizon

Other, standard notation is given in ‘‘Information for Readers
& Authors’” at the rear of each issue.
Definition

A positive function r(-) is completely monotone if and only
if it has derivatives of all orders, and they alternate in sign, see (2).
Assumptions

1. Parametric models are an approximation to the
software-reliability growth process. In general, there is no *‘cor-

[EEE TRANSACTIONS ON RELIABILITY, VOL. 40, NO. 3, 1991 ALGLUST

rect’” parametric reliability-growth model. While a parametric
model might workwell on some failure-data sets, it might also
give bad predictims for other data sets {1].

2. The *‘gondness of fit'’ to observed data and *‘quality
of prediction’ of future failure behavior are two distinct (not
necessarily equivilent) properties of reliability growth models

(1.

Background Theary

1. Under vesry general conditions, if the software usage
is random and time homogeneous, and if faults are fixed im-
mediately and perfctly, then the reliability growth process has
a completely momtone intensity [12].

2. Conversel, virtually all completely monotone functions
can occur as the fallure rate of reliability-growth processes [12].

3. PROBLEM FORMULATION

Consider the failure data as in (1). Our goal is to find a
completely monomne rate function and/or the associated mean
function which best fits the data. The mean function does not
strictly satisfy the mmplete monotonicity property, rather, M(r)
is a nonegative fuaction whose derivative dM(r)/dr is a com-
pletely monotone %nction. Our approach is to obtain an initial
raw estimate for e required function from the data, and then
to smooth it by {ming a completely monotonic function which
is closest to it inthe least squares sense.

A reasonableraw estimate M () for the mean function is
a piecewise linear function with breakpoints at ¢, i=1,....n,
such that M(z,) =i

L=<t<t,;i=0,..,1-1

t,<t<sT

M) = {i‘*'(f'f.)/(hn-h)
n+8@—-1)/(T—1,)

&)

The second term i the final interval reflects the absence of a
failure in the persd (1,,77]. The choice of & is somewhat ar-
bitrary, with higher values tending to give more conservative
estimates. In this work we consider values of 0.0, 0.5, 1.0 for
&; however one cam argue for and against any particular value.

In practice, & is necessary to discretize the problem of
finding a complexly monotone function to the mathematically
more tractable pmblem of finding a finite set of points along
that function. Themost plausible and straightforward approach
is to consider dismete time points which are equally spaced.
We thus divide thetime interval [0,77] into k intervals of equal
length 6 =T/k, anl define 5;=i6, i =0,...,k. Thus the sequence
;= M(s;) is anitial estimator for the values of the mean
function at the fired intervals s;. In general, however, this se-
quence does not satisfy the complete monotonicity assumptions
of the model, and thus needs some modification.

For the prob®m of estimating the rate function, we obtain
an initial estimatr from the slope of M(r). Specifically, the

sequence — ORIGNAL FACE IS
OF POOR QUALITY

SOFER/MILLER: A NONPARAMETRIC SOFTWARE-RELIABILITY GROWTH MODEL 331

Foo= (i —mi_g) /6 i=1,0k

is a raw estimate of the failure rate at the points s,.

When working with discrete, equally spaced time points,
the analogue of a completely monotone function is a complete-
ly monotone sequence. The sequence (r;, i=1,2,...) is com-
pletely monotone if —

(=1) AV r,20, j+1<i; j=0,1,..)
where A/ is the order j backward difference operator:

A° ri=r;, Al r=rn—=ri_y, A r,-=Aj'l r,-—Aj'l ri_, j>L

&)

In general, the initial estimate (?,....F) does not have the
complete monotonicity property. Our goal is to find the
*‘closest’” completely monotone sequence (ry,....rc), and use
it as an estimate of the sequence of failure rates at times s;. Us-
ing the criterion of weighted least squares, the problem is to
find a vector r which minimizes —
=
D(r#) = ¥, wilrn—r)? ©)

i=1

subject to the complete monotonicity constraints of (4), where
w, is a set of prespecified weights.

Numerical experience indicates that the effect of the very
high order difference constraints on the optimal solution is at
most marginal; moreover, their presence leads to ill-conditioning
of the optimization problem. Consequently we relax the con-
straints in (4) and consider differences of at most d (not %),
with d being typically 3 or 4. Similarly, it is necessary to con-
strain the sequence infinitely far into the future; we restrict the
number of future intervals to /, rather than c. Finally, many
of the constraints in (4) are redundant, eg, Ar;_ ;<0 and A?
r,=0 imply that A r,=0. Eliminating those redundant con-
straints, we obtain the reduced system of equations —
(-1)%? r,20, d+1<isk+l!

. ™
(—1)YA r 20, O<j=sd-1,
and our problem is to minimize (6) subject to (7).

For d=1, the problem is the well known *‘isotone regres-
sion’’ (Barlow, et al [2]) and addressed in the reliability-growth
context by Campbell & Out (3], and Nagel, et al [17]. If the
last interfailure happens to come from the right tail of the in-
terfailure time distribution, #, underestimates r(7), and the
monotone constraint on r has no effect; thereby leading to a
negative bias. Imposing the additional constraint of convexity
tends to pull this estimate up. In most software-reliability ap-
plications, a positively biased estimate of the failure rate is safer
than a negatively biased estimate; thus, higher order constraints
seem to be desirable, and the generalization of isotone regres-
sion to completely monotone regression is an improvement.

Return to the problem of estimating the mean function. Its
first order derivative is completely monotone, and using the
above, our problem is:

k
D(mi) = Y, w,(m~rm,)?
i=1
subject to (—1)*'a? m =0,
(= 1)/ m =0,
m.=n+8, k>0
my=0.

min

d<isk+l (8)
O=j<d-1

If testing stopped at a failure, (1,=T7), then §=0. For trun-
cated testing however, § =0.5 is more plausible. Using an argu-
ment based on the assumption of Poisson process, § =1 is also
a plausible choice.

The optimization problems in this section are linearly con-
strained quadratic programming problems, and algorithms for
their solution are readily available in the literarure. However,
our particular problem of least squares regression under higher
order difference constraints becomes increasingly ill-conditioned
as the problem size grows [15]. Thus, a numerically stable
algorithm should be employed for its solution. For a detailed
description of a viable solution approach, see [15].

An additional difficulty when auempting to include
monotonicity requirements into the future, is that the Hessian
matrix (the matrix of the second order derivatives of the objec-
tive function) is singular since the predictions 7, and m, (where
i=k+1,...,k+1[) do not appear in the objective. Moreover, the
optimal future rate or mean estimators obtained by the least
squares objective are not unique. Section 4 shows how to over-
come the problem of singularity, by reformulating the con-
straints on the future rates (or mean function estimates) in terms
of those of the past. Surprisingly, this approach also provides
bounds — lower and upper envelopes for these future estimates.

4. PREDICTIONS

Formulation (8) gives rise to some computational problems,
when predictions are requested, ie, when /> 0. Algorithms for
solving quadratic programming problems [11] usually require
that the Hessian matrix of the objective function be positive-
definite. However, the Hessian matrix of the objective for (6),
(ie, diag (wy,...,w;)) is only positive semi-definite, and does
have singularities. As a result, not only do we encounter
numerical difficulties when trying to solve the problem direct-
ly, but the optimal solution is not unique. Indeed, any two solu-
tion vectors where the first kK components are equal, yield ex-
actly the same objective value. In other words, if the complete-
ly monotone sequence (ry,...,r;) can be extrapolated ! time in-
tervals into the future, in a way that the resulting sequence
(Fyoe- . Fisy) is completely monotone, then all such possible ex-
trapolations have the same least squares objective. We show,
that among all such extrapolations, there exist a globally highest
and a globally lowest extrapolation, and all other completely
monotone extrapolations into the future must lie in between the

332

highest and lowest bounds. We thus have an envelope in which
all completely monotone extrapolations are restricted. In addi-
tion, we derive the conditions under which the sequence
(ry.....ry) can be extrapolated as a completely monotone se-
quence into the future.

Consider the completely monotone sequence of order 4
R=(r,.....r;). The sequence (Feat1se- Tis1) is defined to be
a feasible completely monotone extrapolation of order d for R,
if the sequence (ry,....rx.;) is completely monotone up to
order d, ie, it satisfies (7). In addition, this extrapolation con-
stitutes an upper bound for all feasible extrapolations of order
d, if any other such extrapolation, (Fig1reee P i) satisfies
Fra;Stis; for i=1,...,0 Similarly it constitutes a lower
envelope if 7y, = ri4, for all i. We derive conditions for the
existence for such higher and lower envelopes for the completely
monotone extrapolations.

For d=1 and d=2, the sequence (ry,...,7y) can be ex-
traplated into the future by letting 74 ; ="y, i = 1,...,1. This ex-
trapolation is clearly the upper envelope for all completely
monotone extrapolations of order 1 and 2, and is always feasi-
ble. Also for d= 1, the extrapolation r, ;=0 is clearly a lower
envelope for all isotone extrapolations. The next proposition
shows, that the lower envelope for feasible extrapolations of
order d=2 is along a piecewise linear function which has slope
A' r,. until it reaches zero, after which it continues as a
constant function zero. We define

ilb(—=r/A' r) ifA' >0
{S‘ (—r r) i k o)

! Af A =0

Proposition . Consider the constraints (7) with d=2 and fix-
ed I1>0, and let (r,...,r;) be a feasible solution to (7) with
/=0. Then the extrapolation

(10)

re+iA' o i=1l...p
Fevi = .
0 i=p+1,..1

is a lower envelope for all feasible extrapolations of order 2
to (rl,...,rk).

Proof: The solution above is clearly monotone, and A
res;=0 for i=1,..p and i=p+3,..0 In addition, Al
Tkep+1= —(re+ (p+ 1A' 1) and A? iy pua=nc+pal n,
which, by definition of p are both nonnegative. Thus the con-
straints of (7) for d=2 are satisfied. Note also, that for any
other feasible extrapolation (Fi41,...,Fx+;) We have —

Al Py, zA

Thus, if i<p then —

I
Fk+i = + E Al "-’H,}' = rk+iA1 e = Teqje
j=1
It follows that (10) is a lower envelope as proposed.
Q.ED.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 40, NO. 3, 1991 AUGUST

Proposition 2. Consider the constraints (7) with d=3 and fix-
ed I>0. A solution (ry,....r;) which satisfies (7) with /=0 can
be extrapolated to a vector (ry,....rk4;) which satisfies (7) with
[>0 if and only if:

1)
re+jal rk+—2—-j(j+I)A° r20;j=1,..1L (11

In addition, let —

_ (gilb(—Aa' /At) if A2 r,>0
l if A2 r,=0.

Then the upper envelope of all feasible extrapolations for d=3
is:

re+idl r+ hi(i+ DAY R i=1,...q
Thei =

rk+q l=q+1,,l

Proof- Any feasible extrapolation satisfies:

i
r, + E A‘ Te+j
J=1

Tisi

1
<+t + £y iti+1)A? r,

and the nonnegativity of ry.; implies that (11) must hold.
Conversely, assume that (11) holds. Now since {r} is
completely monotone of order 3, the sequence {-a'r}is
completely monotone with order d=2. Using proposition 1 for
the lowest feasible convex extrapolation for {—a'r}, we ob-
tain the upper envelope for completely monotone extrapolations
of (ry,...,rs) of order 3. Q.ED.

Proposition 3. Consider the constraints (7) with d=3 and fix-
ed >0, and let (ry,...,r;) be a solution to (7) with /=0 satis-
fying (11). Let p be defined as in (9).

(a). If p=1, then the extrapolation —
N+ = e + iA'r, i=1,....p
is a lower envelope for all feasible extrapolations of order 3
to (r,,...,rk).

®). If p<I, let —

u = min(l,1+gilb(=2r,/A' 1))

SOFER/ MILLER: A NONPARAMETRIC SOFTWARE-RELIABILITY GROWTH MODEL 333

Then the extrapolation —

Teei =

1 - Al
et ib (i1 (2 W\ o
2 u(u+1)

0 i=u+l,...1
(12)

is a lower envelope for all feasible extrapolations of order 3
to (rl,....rk).

The proposition states that the lowest envelope is a linear
function with slope A' r,, provided that such a linear function
is feasible (nonnegative); otherwise it starts as a quadratic func-
tion with constant second order difference

2(ry+ud')
a=-|——————-
u{u+1l)
which flattens to zero at r,,, and from there continues as
zero. '

Proof If p=1then (10) is a feasible extrapolation of order
3, thus a follows from proposition 1. If p </ then (10) does not
satisfy the third order difference constraints. We now show that
for this case, the function of (12) is a lower envelope for any
feasible extrapolation. First assume that there exists a feasible
extrapolation F,y...74; for which A 7. <a. Then

_ _ 1 7 =
rk+l+(u—l)Al rk+|+? (u_l)uA. Teel

1
< retud! r,t+?u(u+1)A2 Ti+i
= ro+uld' re— (n+ud' r) =0,

in contradiction to the conditions given by proposition 2, for
a feasible extrapolation for r,...,r;, Fi, . We therefore con-
clude that any feasible extrapolation has a second order dif-
ference of at least a. If, on the other hand, A? Fre1>a, then
Fi+1>Tee- An inductive argument starting from r,, com-
pletes the proof. Q.ED.

Proposition 4. Consider the constraints (7) with d=4 and fix-
ed [>0. A solution (r,...,r;) which satisfies (7) with /=0 can
be extrapolated to a vector (ry,...,rx4+;) which satisfies (7) with
{>0 if and only if —

1
Al re+jA? n+7j(i+l)A3 <0 j=1,.1 (13)
1
re+ 1A r,,+—2-l(1+l)A2 rn =0, (14)

1
rk+%(j—1)A‘ rk+-6—j(j—-1)A2 n=0j=1,.L (5

If A' r,+1A° r,<0 then the upper envelope of all such ex-
trapolations is:

I

Fewi = r+id! rk+—2—i(i+l)A2 re i=1,...,p. (16)

Otherwise, let —

v = min(/,1 +gilb(=24" r,/A% r)).

Then the upper envelope of all such extrapolations is:
0 | 7 | S .
re+id'rn+ 7:(1+1)A n+ gl(l+1)(i+2)

=2A'r +vA'r)

Teni = 4 i=1,..,v 1

k+ (y(v+1)) 4n
\Tk+v i=V+l,...,I.

Proof. If the sequence {r;.,} is a feasible extrapolation
of order d=4 then the sequence {—A' r,, } is a feasible ex-
trapolation of order d=3. By Proposition 2, the conditions for
existence of the latter are given by (13). In addition, the upper
envelope of all extrapolations for d=4 is the sequence {r, .}
for which {—A"' r,,,} constitutes the lower envelope of all ex-
trapolations of order d =3. Applying Proposition 3 with respect
to the sequence {—A' r,,,} and integrating over this lower
envelope yields the sequence of (16) and (17). Note that by con-
struction, the resulting sequence is nonincreasing, convex with
nonpositive third order difference. It remains to determine the
conditions under which this sequence is nonnegative. First, we
note that condition (14) guarantees that (16) will be nonnegative.
From Proposition 2 this is also a necessary condition. Also con-
ditions (15) guarantee that ry,, is nonnegative for any possi-
ble value of v between 1 and /. Since (17) represents a decreas-
ing function which becomes constant for i = v, this guarantees
that r, ., is also nonnegative for any i. To show that conditions
(15) are also necessary, define

2
Py) = rk+?U—l)A' rk+—é-j(i-1)A2 .

1t is easy to see that P(j) decreases for j=1,...,v and increases
for j=v,..,.. Suppose that (15) is violated for some j. Let j°
be the smallest index to violate this condition. It follows that
j <vand that P(v) 0. This in turn implies that r,,, <0, and
thus no feasible extrapolation with d=4 is feasible, hence a
contradiction. ' Q.E.D.

We now derive the envelopes for prediction for the mean
function. Consider a sequence of order d: M= (m,,...,m;)
which satisfies (8). The sequence {mg,,....M ;) is defined
to be a feasible extrapolation of order d for M, if the sequence
(my,...,mg,,) satisfies (8). In addition, this extrapolation con-
stitutes an upper bound for all feasible extrapolations of order
d, if any other such extrapolation (/g .y,....M,;) satisfies
MesiSmg,; for i=1,..0 Similarly it constitutes a lower
envelope if M, =m,, fori=1,....L

PO Y

3

We derive conditions for the existence for such higher and
lower envelopes for the feasible extrapolations for M. The
derivative of the mean function is completely monotone.
Therefore, the lower and upper bounds for all feasible extrapola-
tions of order d to m,,...,m, are obtained by integrating respec-
tively over the lower and upper bounds for all feasible extrapola-
tions of order d—1 to Amy,...,Am,.

Consequently, for the case d=1, d=2 and d=13, the se-
quence (my,...,m;) can always be extrapolated into the future.
The upper envelope for all feasible extrapolations of order up
to 3 is the linear function:

My = me+idl my

For d=1 and d=2 the extrapolation m,,; = m, is clearly a
lower envelope for all feasible extrapolations. Proposition 3
shows, that the lower envelope for feasible extrapolations of
order 4 =3 is along a quadratic which tapers off to a constant
function.

Proposition 5. Consider the constraints (8) with d=3 and fix-
ed />0, and let (m,,...,m,) be a feasible solution to (8) with
I=0. Let — '

ahp Al 2 a2
_ {gllb(A" m/Af m), if A° m >0 (18)

! ,if A2 m =0

Then the extrapolation —

—

o {mk-HA' m+%i(i+ 1A m, i=1,....p
k+1

Mesp Li=p+1,....1

is a lower envelope for all feasible extrapolations of order 3
to (ml,...,mk). ’
Proof. Follows from proposition 1. Q.E.D.

Proposition 6. Consider the constraints (8) with d=4 and fix-
ed />0. A solution (my,...,m,) which satisfies (8) with /=0
can be extrapolated to a solution (my,...,m ;) which satisfies
(8) with />0 if and only if —

1
Al my+jA? mk+?j(j+1)A3 m 20, j=1,...,1 (19)

Let —

_ (gilb(— A% m/A% my), if A3 m>0
! , if A m=0

1
a = Al m,t-H]A2 m,+ ?q(q+l)A3 my.

Then the upper envelope of all such extrapolations is:

IEEE TRANSACTIONS ON RELIABILITY, VOL. 40, NO. 3, 191 AUGLST

My, =

M+ iA 4 172 i(i+ DA+ 1/6 i(i+ 1) (i+2)8°m,

i=l,..q

Proof: Follows from proposition 2. Q.ED.

Proposition 7. Consider the constraints (8) with d=4 and fix-
ed I>0, and Jt (m,,...,m,) be a solution to (8) with /=0 satis-
fying (19). Let p be defined as in (18).

a. If p=!, then the extrapolation —
Al 1. 2 .
my.; = mg+iA mk+7l(x+1)A m, i=1,....p
is a lower emselope for all feasible extrapolations of order 4
to (m,.....mt].
b. If p<l, let —
u = min(lL1+gilb(=2Aa" m /A% m,)).

Then the extapolation —

Miyi =

-~

| 1
mk+iA'mk§3-i(i+ A m + gi(i+l)(i+2)

< —2(3'm+ud’m,)) .
. , Ii=1,...,u
w(u+1l)

M+ u i=u+1,...1
is a lower emelope for all feasible extrapolations of order 4
to (my,....mg.

Proof: Follows from proposition 3. Q.ED.
Propositien 7 states that the lowest envelope is either along

a quadratic fumction, or it starts as a cubic function which tapers
off to a consuant function.

5. MONIE CARLO STUDY OF PERFORMANCE

To get mn idea of how well the prediction envelopes
estimate future behavior, we conducted a small Monte Carlo
simulation exgeriment. Our goal is to estimate the number of
events over same finite horizon. As in [13], we compare the
completely menotone approach to some of the more popular
parametric madels. A value of d =4 is used for the completely
monotone estimation (6 is taken as 1). Thus the least squares
problem (8) & solved for d=4, with the constraints of (19)
replacing the constraints of (8) fori=k+1,...,k+ L Propositions

SOFER/MILLER: A NONPARAMETRIC SOFTWARE-RELIABILITY GROWTH MODEL 33§

6 and 7 are applied 10 the resulting solution to obtain the upper
and lower envelopes for the future mean function. Finally, we
need a point estimate of the mean number of failures. We ar-
bitrarily decided to use the midpoint of the envelope.

Our choice of parameter models consists of three families
of nonhomogeneous Poisson processes (NHPP). The mean func-
tions of the NHPPs can have exponential, power or logarithmic
form:

Mexp(t) = y(l -e™ "),

Mpow(t) = 'Y‘an

the completely monotone comes in as **second best™, ie, it gives
better predictions than those given by using the incorrect
parametric model. In practice, of course, it is highly unlikely
that a parametric model used for prediction will indeed be the
“correct’’ model from which the failure data were generated.
Table 5 summarizes the performance of the prediction
envelopes. The majority of the envelopes have zero width, ie,
the upper envelope is identical to the lower envelope.

TABLE 2. Average Predictions of Mean Number
over Future Horizon

Model True CM.
Miog (1) = vlog(Br+1). Number Mean EXP LOG POW BEST Mdpt
. . 1 10.00 8.67 8.86 9.33 8.73 9.52
Those models are fit to data by using the method of maximum 2 7.8 562 6.11 7.34 6.38 1.72
likelihood [16]. Furthermore, we define a fourth model which 3 5.29 2.97 3.73 5.36 4.70 5.88
is a mixture of the above three. It is fit by selecting the best 4 3.83 1.36 2.23 3.88 3.62 4.50
fitting (maximum likelihood) of the three models. This is the 3 2.73 0.51 £.31 2.76 2.65 3.40
‘“‘best’” parametric model, among the three possibilities 6 1.90 0.15 0.75 1.2 1.87 2.5
P ’ g po : 7 642 610 676 820 6.48 7.4
We draw our data from 16 different Poisson processes. 8 4.43 3.41 468 6.63 419 538
Each process is observed over the interval [0,100] and the future 9 3.16 1.64 3.29 5.27 2.89 4.06
interval is {100,125], — 25% into the future. We used k=20 10 227 064 2.35 4.1 2.28 3.08
and /=5. The 16 cases provide a variety of growth patterns. i; ;'gg g'gg é'?‘; g'(l)g é'Zé 3§?
Fach case is replicated 400 times. The cases are summarized 13 317 3131 470 6.72 167 473
in table 1. 14 147 151 362 563 1.91 2.84
1§ 0.54 0.57 2.95 4.77 0.75 1.60
TABLE 1. Data Models (Poisson Processes). 16 012 014 248 4.07 0.21 0.88
[All models are scaled so that E(N(100)) = M(100) = 40]
TABLE 3
Model Type of M(125)- o e)
Number NHPP Parameter M(100) Percent Prediction Error (Bla_s) for Mean Future Number
i Homogeneous 10.00 Fitted Model
2 Power a = .749 7.28 Model
3 Power a = 557 5.29 Number EXP LOG POW BEST CM
4 Power a = 410 383
s Power a = .296 2.73 1 -13. -1L -7, -13. -5,
6 Power a = 208 1.90 2 -23. -16. +1. -12. +6.
7 Logarithmic 8 = .0124 6.42 3 -4, -130. +1. ~11. +11.
8 Logarithmic 8 = .0429 4.43 4 -65. ~42. +1. -6. +17.
9 Loganthmic g = .131 3.16 5 -81. -52. +1. -3. +24.
10 Logarithmic g = 461 2.27 6 -92. ~61. +1. -2. +33.
Il Logarithmic 8 = 243 1.62 7 -5. +5. +28. +1. +16.
12 Exponential n = 00808 5.88 8 -23. +5. +50. —6. +21.
13 Exponential 7 = 0167 117 9 —48. +4. +67. -8. +29.
14 Exponential n = .0265 1.47 10 -72. +3. +81. 0. +36.
15 Exponential n = 0385 0.54 11 —89. +3. +98. +6. +42.
16 Exponential n = .0550 0.12 12 0 +12. +32. . +6. +24,
13 +1. +48. +112. +16. +49.
14 +3, +146. +282. +30. +93.
15 +6. +448. +788. +40. +199.
The performance of the parametric models and the com- __!6 +14. +1921. +3216. 74 +613.
pletely monotone approach are summarized in tables 2 —4. Table
2 shows the average prediction made by each model for the 400
replicates of each case. Table 3 shows the average percentage ,
Perspective

error, or bias. Table 4 shows the root-mean-square percentage
error for the 400 estimates made by each model for the 16 test
cases. When the data come from a certain model, then that par-
ticular model gives the best predictions. However in most cases,

We stress that some components in the formulation of the
completely monotone model were chosen arbitrarily. Other
definitions of the raw estimates and other objective functions

336 [EEE TRANSACTIONS ON RELIABILITY, VOL. 40. NO 1. 1991 AUGLST
TABLE 4 acknowledges support of the US National Aeronautics and Space
Percent Root Mean Square Error Administration Grant NAG-1-771.
for Mean Future Number Prediction
Fitted Model
Model REFERENCES
Number EXP LOG POW BEST CM
1 26. 24, 29, 24 29, 1] A. 'A. Abdel-Ghaly, P. Y. Chan, B. Littlewood, **Evaluation of com-
2 19, 32. 2. 31, 30. peting software reliability predictions’”, /EEE Trans. Sofrware Engineer-
3 53, 39. 23 3. 39. ing, vol SE-12, 1986, pp 950-967.
4 59. 46, 23 29, 48, [2] R. E. Bariow, D. J. Bartholomew, J. M. Bremner, H. D. Brunk, Suarnsnca!
5 83 55. 1. 26. 60. Inference Under Order Restrictions, 1972; John Wiley & Sons.
P 93, 62. 3. 26. 73, [3] G. Campbell, K. O. Ott, **Statistical evaluation of major human errors
7 37. 32, 39. 16. 38. during the development of new technological systems™”, Nuclear Science
8 44, 31. 59. 43. 50. and Engineering, vol 71, 1979, pp 267-279.
9 57. 26 5. 47. 62. [4] P. Y. Chan, Sofrware Reliability Prediction (PhD Thesis), 1986, Depant-
10 7s. 23 89. 40, 74. ment of Mathematics, The City University, London.
11 90. 21 99. 27. 85, [5] L. H. Crow, Reliability analyses for complex repairable systems, Reliabiliry
12 18, 34 47. 37. 45. and Biomerry, (Proschan & Serfling, eds), 1974, pp 379-410: SIAM,
13 45, 61 120. 53. 80. Philadelphia.
14 54, 155 202. 82. 142. (6] J. T. Duane, **Learning curve approach to reliability monitoring'’, IEEE
15 67. 461 805. 134. 278. Trans. Aerospace, vol 2, 1964, pp 563-566.
16 95. 1956. 3268. 336. 776.
TABLE 5
Performance of Completely Monotone Prediction Windows
True Mean Coverage
Data Fraction Fraction Av. width
Model Zero Non-zero Non-zero Fraction Fraction Fraction
Number Width Width Envelope Overesumate Correct Underestimate
1 15 285 0.348 408 067 .525
2 515 .485 0.816 475 .105 320
3 .503 .497 0.966 542 182 275
4 .548 .452 0.759 .550 167 .283
5 .570 .430 0.588 585 .160 255
6 .600 .400 0.414 .595 185 .250
7 .420 .580 1.116 610 .193 197
8 417 .583 1.334 515 .283 202
9 .505 .495 0.897 .560 .243 197
10 573 427 0.616 .600 .193 .208
11 .573 427 0.441 .605 182 213
12 .363 .637 1.228 .648 .190 162
13 .305 .695 ©1.828 .520 .400 .080
14 321 679 1.300 .574 333 .093
15 .503 .497 .0656 .652 .243 .105
16 .698 .302 0.209 .925 .063 013

will give different, and possibly better estimates. Nevertheless,
the completely monotone approach shows a robustness not ex-
hibited by the individual parametric models. The procedure has
quite low bias, which is less than that caused by using the in-
correct parametric models for prediction. Comparisons to the
*‘best’’ parametric model are unfair because the Monte Carlo
data are, in effect, drawn from that model. We could use other
models to generate data for which this *‘best”” parametric model
is inferior to the more robust completely monotone approach.

ACKNOWLEDGMENT

AS gratefully acknowledges support of the US National
Science Foundation Grant ECS-8709795. DRM gratefully

[71 A. K. Goel, K. Okumoto, ‘‘Time independent error detection rate model
for software reliability and other performance measures'’, JEEE Trans.
Reliability, vol R-28, 1979, pp 206-211.

[8] Z. Jelinski, P. Moranda, *'Software reliability research™, Starisrical Com-
puter Performance Evaluation, (W. Ferberger, ed), 1972, pp 465-484;
Academic Press.

[9] B. Littlewood, ‘'Software reliability growth: A model for fault removal
in computer-programs and hardware-design'’, JEEE Trans. Reliability,
vol R-30, 1981, pp 313-320.

[10] B. Litlewood, P. A. Keiller, *‘Adaptive software reliability modelling™”,
Proc. 14-th Int’l Conf. Fault-Tolerans Computing, 1984, pp 108-113; [EEE
Computer Society Press.

[11] G. P. McCormick, Nonlinear Programming, 1983; John Wiley & Sons.

[12} D. R. Miller, ‘‘Exponential order statistics models for software reliabili-
ty growth”, /EEE Trans. Software Engineering, vol SE-12, 1986, pp
12-24.

SOFER/MILLER: A NONPARAMETRIC SOFTWARE-RELIABILITY GROWTH MODEL 337

.

{13] D. R. Miller. A. Sofer, “'Completely monotone regression estimates
of software failure rates'’, Proc. Eighth Int'l Conf. Software
Engineering. 1985, pp 343-348; [EEE Computer Society Press.

{14] D. R. Miller, A. Sofer, “A nonparametric approach to software
reliability, using complete monotonicity"*, Software Reliability: A
State of the Art Report, (A. Bendell, P. Mellor, eds), 1986, pp
183-195,; Pergammon Press.

[15] D. R. Miller, A. Sofer, *Least squares regression under convexity
and higher order difference constraints with application to software
reliability™", Advances in Order Restricted inference, (Dykstra,
Robertson, Wright, eds), 1986, pp 91-124, Springer Verlag.

[16] J. D. Musa, K. Okumoto, **A logarithmic Poisson execution time
model for software reliability measurement’, Proc. Seventh Int'l
Conf. Sofrware Engineering, 1984, pp 230-238; IEEE.

(171 P. M. Nagel, F. W. Scholz, J. A. Skrivan, '‘Software reliability:
Additional investigations into modeling with replicated experiments’™,
CR-172378, 1984; NASA.

AUTHORS

Professor Aricla Sofer; Department of Operations Research and Applied
Suatistics; George Mason University; Fairfax, Virginia 22030 USA.

Ariela Sofer received her BSc in Mathematics and her MSc in Opera-
tions Research, both from the Technion, Technological Institute of Israel. She

received her DSc degree in Operations Research from The George Washington
University in 1984 Dr. Sofer joined George Mason University in 1983, where
she holds the rank of Associate Professor. Her areas of interest are software
reliability, mathematical programming, and numerical optimization. She is a
member of ORSA, SIAM, and the Mathematical Programming Society.

Professor Douglas Miller; Deparument of Operations Research and Applied
Statistics; George Mason University; Fairfax, Virginia 22030 USA.

Douglas R. Miller received his BS in Mathematics from Camegie In-
stitute of Technology, Pittsburgh in 1966, and the MA in Mathematics and PhD
in Operations Research from Cornell University, Ithaca in 1969 & 1971. Dr.
Miller held positions at the University of Missouri-Columbia, and the George
Washington University, before joining George Mason University, Fairfax in
1989, where he is Professor of Operations Research and Applied Suatstics in
the School of Information Technology and Engineering. He has also held visiting
positions at Universidad Nacional del Sur, Argentina, and the City University,
London. His current research involves probability modeling and statistical
analysis, with applications to software reliability, queueing systems, and
polymerization processes. Since 1977 he has been associated with the advanced
digital avionics program at NASA Langley Research Center. He is a member
of ORSA, TIMS, ASA, ACM, and the IEEE Computer Society.

Manuscript TR88-216 received 1988 December 15; revised 1990 August 5.

IEEE Log Number 42712 <TR»>

Appendix 2

P. A. Keiller and D. R. Miller, "Oon the Use and the Performance of
Software Reliability Growth Models," Reliability Engineering and

System Safety 32 (1991): 95-117.

Reliability Engineering and System Safety 32 (1991) 95-117

On the Use and the Performance of Software Reliability
Growth Models

Peter A. Keiller

IBM Corporation, Library Management and Systems Control Bepartment,
10401 Fernwood Road, Bethesda, Maryland 20817, USA

&
Douglas R. Miller

Department of Operations Research and Applied Stataes.
School of Information Technology and Engincering
George Mason University, Fairfax, Virginia 22030, USA

ABSTRACT

We address the problem of predicting future failures for a picee of software,
The number of failures occurring during a finite future tme interval is
predicted from the manber of failures observed during an imial period of
usage by using software reliability growth models. Tvo differcet methods for
using the models are considered: straightforward use of indkidual models
(simple models). and dynamic selection among models based goodness-of-
fit and quality-of-prediction criteria (super models). Performace is judged
by the refative error of the predicted number of failures over fumre finite time
intercals relative to the number of failures eventually obsered during the
intervals. Six simple models and eight super models are evalmted based on
their performance on twenty data sets. This study is & no means
comprehensive. Some conclusions can be drawn, but many agen questions
remain regarding the use and the performance of software relibility growth
models.

. INTRODUCTION

Software sometimes fails to perform as desired. These failurs may be due to
errors, ambiguities, oversights or misinterpretations of #e specification
95 '

Reliahility Engineering and Svstem Safery 0951-8320 91,803-50 C 19 Elsevier Science
Publishers Lid. England. Printed in Great Britain

. CRIGINAL FAGE IS
PREGEDING PAGE BLANK NOT FILMED | OF POOR QUALITY

- 96 Peter A. Keiller, Douglas R. Miller
' which the software is supposed to satisfy, carelessness or incompetence in serve
writing code, inadequate testing, incorrect ot unexpected usage of the that :
- software, or other unforeseen problems. All of these potential sources of Ar
failure create an environment of uncertainty for the behavior of any reliar
software: will the software fail or not? If so, when? Statistical modeling and treate
analysis provide tools to investigate this phenomenon. critic
A general goal is to understand, predict and control the uncertainty in grow”
software failure behavior. Statistical models and analysis can investigate futur
: ' various aspects of software and its failure, at different levels of detail. Our safet.
study treats a piece of software as a ‘black box’ operating in a random prese:

environment. We ignore factors in the development of the software, the
internal structure and functioning of the software, and details of the
operating environment. In contrast, Eckhardt & Lee,! Littlewood? and
Littlewood & Miller® present models that deal more closely with the

#
L3

; " structure of the software. A sys
: . In this paper we consider the sequence of times at which a piece of some
; ' software fails. After each failure, the software is fixed so that (hopefully) it the de

will not fail again from the same cause. From these data we want to predict
future failure behavior. In particular, we will try to predict the number of
oz additional failures which will occur during a future time interval of finite
length. Our approach is to use ‘reliability growth models’. The questions are:
‘What is the best way to do this? and ‘How well do these models predict
future failure behavior?. Many reliability growth models have been
proposed. For a given piece of software it is very difficult (perhaps
impossible) to know which reliability growth model to use. (Iannino ez al»®
give qualitative guidelines for choosing different software reliability growth
models.) It is also difficult to know much about the accuracy of the
predictions about future failures. Our study looks at these problems.

We have taken failure data for 20 programs, fitted reliability growth
models to initial segments of each data set. predicted the number of
remaining failures in the data set, and computed the prediction errors. Our
reliability growth models include several of the usual models in the literature
and additional models that we call ‘super models’. These super models are
based on a set of the usual reliability growth models plus a selection criterion
which identifies one of the set to use for predictions at each point of time;
selection criteria may be based on ‘goodness-of-fit’ or ‘quality-of-past-
prediction’ measures. We have tried to identify the best models or
approaches, conditional on our 20 failure data sets. We cannot make any
g strong recommendations, but we do see that many of the models give useful
: predictions if only nominal levels of reliability are of concern. The major

conclusion is that there are still important open questions in the area of
reliability growth modeling and prediction. We hope that this paper will

ool At bt S e

nn

————— o as v s

SRUNAL FACE 19
OF POOR QUALITY

—_ U e e i e e ey ey Ty R R]

[£']

=2

- 3 M 0 M

Software reliability growth models 97

serve as an example of an objective study of this important problem, and
that more work will be done.

An important negative conclusion can be drawn from any study of
reliability growth modeling: only moderate levels of reliability can be
treated. Extremely high levels of reliability such as those required in safety
critical systems cannot be treated; see Miller.**> Some software reliability
growth models will occasionally predict that no failures will occur in the
future; however, this cannot be done with levels of confidence required in °
safety critical software. Even the most casual examination of the numbers
presented in this paper should lead the reader to that conclusion.

THE RELIABILITY GROWTH SCENARIO

A system contains design flaws, each of which eventually manifests itself at
some point in time, whereupon the system is redesigned in order to remove
the design flaw. Design flaws are often called ‘bugs’, and the time points of

60 00

48 00 4

36 001

i

24 00 4

1200 4

0.00 T T T T
000 24 00 48 00 7200 96 00 120 00
Time

Fig. 1. Observed cumulative number of failures as a function of time.

ChiuNRL FAOE IS
0r POOR QALITY g

98 Peter A. Keiller, Douglas R. Miller

manifestation mentioned above will be called “failure times’. If the failure
times are indexed chronologically they can be represented as

0<t, <1, €11, <<, (H

where 1, is the ‘current’ time, the length of time that the system has been
investigated, ie. execution time for software. A convenient way to
graphically present these failure time data and stochastic processes is witha
plot of cumulative number of failures versus cumulative time: let

n(ry=max i, <1} 0<i<t, (2)

be the sample path of such data as depicted in Fig. 1. If svstem redesigns
successfully remove design flaws, system reliability will improve andegn ()
should show a general pattern of stochastically increasing interfailure times,
and plots of the cumulative number of failures in egn (2) should show a
positive but stochastically decreasing slope (negative second derivative).
This phenomenon is called ‘reliability growth’, i.e. the reliability of the
system is improving as successive redesigns remove design flaws. We wish to
make predictions about future behavior of the software. 1.e. for 7 such that
t. <t

RELIABILITY GROWTH MODELS

It is convenient to consider eqn (1) as the realization of a random process:
0<T s, s, T, < (3)

where the T's are random variables (the 1 's are real scalars) and the process is
observed for 1:0<t<t, The stochastic process of which eqn (2} is a
realization is

(N(t)=max(i:T,<1,0< 1} 4

The stochastic processes, eqns (3) and (4). are ‘reliability growth processes’.
Numerous reliability growth models have been proposed for the analysis of
software reliability. The first one specifically for software was proposed by
Jelinski & Moranda.® There are numerous surveys’ ‘! of the software
reliability growth modeling literature.

There tend to be three general classes of software reliability growth
models: interfailure time models, order statistic models, and Poisson process
models. Examples include the Littlewood-Verall model,'? Littlewood’s
Pareto model'® and Duane’s power law nonhomogeneous Poisson
process,'*!5 respectively. (For general discussions of the interrelationships
between these classes of models, some additional modeling considerations,

Software reliability growth models 99
ilure derivations of these models from more basic principles, underlying
assumptions and complications, see Gray'®!” and Miller.'®) All reliability

() growth processes can be thought of as consisting of noisy behavior around a

smooth trend curve. One obvious way of describing the trend curve is with
been the average number of failures occurring by time ¢, i.e. the expected value of
v to the number of failures, thus a trend curve for stochastic processes in eqns (3)
ith a and (4) is
' M@ =E[N®n] 0<1 (5)
-

(2) Several members of a logarithmic family of trend (or growth) curves are
;1gNs shown in Fig. 2. A rough approach to the prediction problem is to pick a
n (1) member from a parametric family of growth curves (as in Fig. 2) which best
mes, fits some software failure data (as in Fig. 1) and then extrapolate along the
woa curve to the right in order to predict the expected number of failures during a
tive). . future time interval. In fact, most reliability growth modeling is equivalent to
~ the . this kind of curve fitting. Sophisticated statistical techniques may be used to
shto
that 80 00

64 00 -
cess /Z/
(3) 4800 P /
e - e i —
s _ e
is a g
-
/"‘ %
4 w2 A

(4) 32 - 7 7
sses’. // ‘N
sis of / /

d by V4
ware 1600 / /
swth
ycess
: 000
rod's 000 4000 8000 120 00 160 00 20000
sson Time
ships Fig. 2. Subset of mean functions for a parametric family of reliability growth models with
1ons, logarithmic trend.

100 Perer A. Keiller, Douglas R. Miller

fit the models. But it had not been proven that these statistical techniques are
superior to a simple qualitative ‘eye-ball' fit. This fact should be keptin mind
when interpreting the accuracy of the predictions from reliability growth
models. In particular, these models are not refined enough to distinguish
between whether there are zero bugs or one bug remaining in a piece of
software.

Another conclusion from the point of view that software reliability
growth is noisy behavior around a growth curve can be used in defining a
rich family of reliability growth models: we want a family which 1s
characterized by the mean function, eqn (5), and we want a rich set of mean
functions. (For a discussion of necessary and sufficient conditions for
reliability growth mean functions, see Miller.!® For a nonparametric
approach, see Miller & Sofer.'®) An attractive family of stochastic processes,
eqn (4), characterized by their mean functions are the nonhomogeneous
Poisson processes (NHPP); Musa & Okumota??-2! have promoted this idea.
NHPPs have an independent Poisson number of failures in disjoint
intervals:

(M +5) = M)
n!

0<1,0<s;n=01273.... (6)

P(N((+ S) _ ‘\v(,) - n) = e—|51(1+s)- M)

This characterizes the processes.
We shall use six parametric families of NHPPs, characterized by their

mean functions:

M1 Power: M= D<a<l
M2 Exponential: M,(f)=3(1—¢e"") O0<n

M3 Logarithmic: M) =7 log(l + B1) 0<f

M4 Pareto: M ()=7(1—(1+ 8077 0<z,0<f

M5 General Power: M () =7((1+p)"*—1) —-l<a< 0,0<p8
M6 Weibull: Myn)=7(1—exp(—ne?)) 0<% 0<n, 0<y

The ‘Power’ law was first suggested in a reliability growth context by
Duane'* and specifically as a NHPP model by Crow.!* The ‘Exponential’
law is the trend encountered in the Jelinski-Moranda® model and the trend
of the Goel-Okumoto22 NHPP software reliability growth model. The
‘Logarithmic’ trend is used by Musa and Okumoto.?%23 (Figure 2 shows
some of the mean functions for this family.) The ‘Pareto’ curve occurs in
Littlewood's!® order statistic model. The ‘General Power’ curve arises
naturally when considering order statistics ‘of independent but non-
identically exponentially distributed failure times.!® The ‘Weibull' NHPP is
discussed by Musa & Okumoto,2° Abdalla-Ghaly et al.) Miller'® and

~ o~ e —

< n

fom "~

es are
mind
rowth
iguish
:ce of

1bility
1ng a
ich is
mean
1s for
netric

o eSSES,

neous
. sidea.
© isjoint

(6)

- their

<y

:Xt by
ential’
“trend
l. The
shows
urs in
arises

non-
{PPis
8 and

Software reliability growth models 101

others. Taken together, these parametric families include many of the
reliability growth models proposed in the literature; see Miller'® for plots of
selected mean functions of these models.

FITTING MODELS

We fit the six NHPP models (M1, M2, M3, M4, M5 and M6) to data in the
form of eqns (1) or (2) as depicted in Fig. 1. In effect, for each of the above six
parametric families, we want to find the ‘best’ fitting curve. We use the
method of maximum likelihood as suggested and described by Musa &
Okumoto?? for fitting these models to data consisting of single sample
paths. For each parametric family we get maximum likelihood estimates
(MLEs) of the appropriate parameters: x, f, y, etc.; this gives us a curve

M@y 0<i<u, (7

uniquely determining the MLE NHPP. To solve for the MLEs we used the
Nelder-Meade?* simplex search algorithm. We wanted a general algorithm
to solve general MLE problems for this study; in practice one would want to
devote more effort to finding the MLEs as Chan?® does for some models.

There is no unique definition of ‘best-fitting". The best way to fit a
stochastic process model to an observed realization of the process is an open
question. As mentioned before, an ‘eye-ball’ fitting may work well. Least-
square or Kolmogorov-Smirnov distances could be used. The definition of
‘best-fitting’ is certainly dependent on how the fitted curve is to be used. In
our context we could define "best-fitting” as equivalent to ‘best-predicting’;
Brocklehurst?® has investigated this approach of fitting some reliability
growth models by optimizing certain quality-of-prediction measures.

We are faced with two problems: finding the best-fitting member of a
given parametric family and choosing among the best-fitting from several
parametric families. We have rather arbitrarily decided to use the MLE fora
given family. To choose among different families we shall try several
approaches: minimum Kolmogorov-Smirmov distance, maximum likeli-
hood and three others (Retro-U, Retro-Y and Retro-PL) to be described
later.

PREDICTIONS

Various predictions can be made from the fitted NHPP with mean function
(eqn (7)): the expected number of failures during a future time interval

(1, t + 5] M(t+5)— M)

102 Peter A. Keiller, Douglas R. Miller

the current failure rate, at time /. ni(1,), where

d

. ‘:{ s=t
P (s)]

m(t) =

the time until a target failure rate
ro: 1o = min {£: m(t) = ro}
the distribution of the time until next failure from the current time
1. £ (s) =1~ P(O failures in (1.t + s =1—exp(=[M(r +5)— M()])

and the density of time until next failure from current time
5 d -
(e fAs) = HEE (s)

A standard approach is to consider the modeling, fitting and prediction
steps as separate activities. Since the ultimate goal is good prediction,
Abdalla-Ghaly er al” argue convincingly that an integrated approach
should be taken: they introduce the 1dea of a ‘prediction system’ which
integrates the above three phases. We are taking such an integrated point of
view in this paper.

QUALITY OF PREDICTIONS

We wish to evaluate the accuracy of the predictions of future failure
behavior which we make. If we predict an observable quantity, we can wait
and compare the observation with the prediction, and then compute a
measure of discrepancy. When predicting the number of failures in finite
future time intervals, the error is simply the difference between the predicted
number and the observed number. For a given piece of software undergoing
execution, failure and fix, as time passes we can make predictions up to
various time horizons, then when that horizon is reached we can compare
the prediction with observation. So for a given piece of software we can
make a sequence of predictions which can be checked against observation;
from this a measure of quality-of-prediction can be computed.

When we use a reliability growth model to predict the distribution or the
density of the time until the next failure, we must compare predicted
distributions to observed times in order to get a measure of quality-of-
prediction. The procedure is as follows: after each failure is observed, the
model is fitted to the data observed, thus far giving a new estimated mean
function. The mean function fitted to the first i observed failures is denoted
as M(1), 0 < 1. The estimates of the distribution and the density of the time

—

90 % o

(o'}

Ko

-

stion
uon,
oach
‘hich
nt of

iture
wait
e a
inite
icted
:0ing
.p 1o
pare
> can
tion:

r the
icted
y-of-
, the
nean
oted
time

Software reliability growth models 103

until the next failure are then computed:

B =)= 1 —exp (= [Vt +) =)) fre ()= S

d—SE”(S) i21

Then the next failure is observed, at time ¢, |, so the interfailure time is
Xis1 =licy — 4

Thus we have a sequence of predictions of successive interfailure time
distributions and a sequence of observed interfailure times. The goal is to
evaluate how well the predictive distnbutions actually predicted the
observed interfailure times. We would like a quantitative measure of quality-
of-prediction. Littlewood and co-workers™?3:27 have provided three such
measures, which we now summarize. (These measures are used mainly for
comparison purposes. It is difficult to interpret the deviations
quantitatively.)

The first quality-of-prediction measure is the ‘u-plot': it is well known that
U = Fy(.Y) has a uniform distribution on the interval [0, 1]. Using this fact, if
£, () is the true distribution of X,., then w,,,=F . (v,,,) will be an
observation from a U[0, 1] distribution. Thus the empirical distribution
formed from the u's should be closed to that of U[0, 1]. I we observe ng +n
failures, starting to make predictions after the ngth failure, the plot of

L, B+ D) i=12,30...n)

is the w-plot. The maximum deviation of the w-plot from the identity
function is a measure ol quality-of-prediction.

The second meuasure of quality-of-prediction is the ‘v-plot’: if the
predictive distributions are good the s should look like a random sequence
of independent L[0.1] variables, and —log(l —u)'s like exponential
random variates. In this case, let

t n

¥i =Zlog(l ——zlnn,,j)"Zlog(l ~ Upy s) i=123...,n
/

j:l Jj=1

and plot the pairs {(y,i/(n+)).i=123....,n). If the predictive
distributions are good. this plot should be close to the identity function. A
quantitative measure of the quality-of-prediction is the maximum deviation
between the y-plot and the identity function.

The third measure of quality-of-prediction is the prequential likelihood:
based on Dawid's® generalization of likelihood to a sequential situation, we

PL, =ﬂ SrosilXng+)
i=1

have

ORIGINARL FAGE IS
OF POOR QUALITY

a |
14 wet—

|
]

104 Peter A. Keiller. Dosglas R. Miller

For comparison purposes, the best predictive system should have the largest
prequential likelihood.

For a detailed discussion of these threemeasures of quality-of-prediction,
see Abdalla-Ghaly et al.,” Chan?* and Keiller ez al.*” These three measures
give a dynamic real-time evaluation of bow well a given parametric model
has done predicting interfailure times up to the present. It would seem
logical to calculate the next prediction {rom the parametric family which has
performed best up to the present on the particular software failure data set
under consideration. These three measures give a basis for making this
choice.

There are other possible measures of guality-of-prediction. For example,
one such measure could be based on past predictions of the number of
failures to be observed in finite time mtervals which have subsequently
elapsed.

SUPER MODELS

We consider eight super models. A seper model is a set of parametric
reliability growth models and a selection criterion; for a given software
failure data set and for a given time, the selection criterion chooses the
parametric model in the set that is to be used for making predictions of
future failure behavior. As time passes for a given data set, a given super
model may change its choice of parametric family to use for predictions.

Our procedure for a super model is asfollows: using maximum likelihood
estimation, we fit all six of the parametric models (M1-M6). Next, the
selection criterion picks one parametricelass based on the fitted models. The
current fitted model of the chosen class& used for making predictions at the
current time.

We consider two goodness-of-fit criteria: Kolmogorov-Smirnov devia-
tions between the fitted mean functiom and the sample path, 1e.

sup M (83— n(0)
0t

and the maximum likelihood of the fitted models. We comment that three-
parameter models (M4, M5 and M6) should fit the data better than two-
parameter models (M1, M2 and M3), and some correction should be made to
the goodness-of-fit criterion to reflect this; see Akaike.2? We do not pursue
this here. It is another example of one of the open questions in this research
area.

We consider three pure quality-of-prediction measures: the u-plot, the y-
plot and the prequential likelihood. Using these criteria requires fitting each

ORIGINAL FARE 1S
GF POOR QUALITY

24

of

prc
tht

rA T -

~ ™

zest

on,
ires
ydel
em
has

set
this

ple,
~of
wly

tric
are
the
of
per
ns.
od
the
“he
the

<g-

1o
ue
‘ch

v"-
ch

Software reliability growth models 105

of the six NHPP models (M1-M§) after each failure and calculating the
predictive distribution and density of the time until next failure. So these
three super models require more computationally intensive implementation.

Finally, we consider three hybrid super models. We use the three quality-
of-prediction measures in a goodness-of-fit mode. At current time, ¢, the six
NHPP models (M 1-M6) are fitted to the data; each fitted model is then used
retroactively to predict (‘retrodict’) the already elapsed interfailure time
distributions and densities; from these retrodictions and the observed data,

u-plots, y-plots and prequential likelihood can be computed, and the best

fitted model chosen from among the six simple models (M 1-MS§).

We comment that it is possible to define other selection criteria. In a
related piece of work, Littlewood & Keiller?® and Chan3°® have shown how
to improve the prediction of the time until next failure by adapting a
reliability growth model, basing the adaption on past quality-of-prediction.

To summarize, our eight super models are all based on six NHPP models
(M1, M2, M3, M4, M5 and M6). The selection criteria for the eight super
models are:

M7 Maximum likelihood
MS Minimum K-S distance
M9 U-plot

MI10 Y-plot

MIl Prequential likelihood
MI12 Retro. U-plot

M13 Retro. Y-plot

MIi4 Retro. PL

EXPERIMENTS

We investigate the performance of 14 reliability growth models: six simple
models (M1-M6) and eight super models (M7-M14). We see how well the
different models can predict the number of new failures manifested during
finite future time intervals.

We base our experiment on 20 sets of software failure data, denoted
D1-D20 in Table 1. The first 15 data sets are the same as those used in
performance experiments by Musa and co-workers,2%-2!3! with two

modifications: D5 consists of only the first 288 interfailure times of Musa's 32
System 5 because a major code change occurred at that point; D11 consists
of the last 100 interfailure times of Sukert's?? data set because the data set
was huge with several major changes. The data consist of execution times
between successive failures. To give the reader a rough idea of the data, we

.-n

106 Peter 4. Keiller, Douglas R. Miller
TABLE 1
Summary of Software Failure Data Sets
Data set Original source Designation in Designation in
designation and reference original source references®?!
Dl Musa*? 1 T!
D2 Musa®? 2 T2
D3 Musa?? 3 T3
D4 Musa?? 4 T4
DS Musa®? 5 TS
D6 Musa?? 6 T6
D7 Musa?? 27 T16
D8 Musa?? 10 T17
D% Musa®* — TI8
D10 Musa?? 17 T19
D11 Sukert®? — T20
D12 Musa?? — T21
D13 Miller33 ISEE-C T2
Dl4 Miller3? AEM T23
D5 Miller3- SMM T25
D16 Abdalla-Ghaly ¢t al” Fig. 2 —
D17 Abdulla-Ghaly er al” Fig. 3 —
D18 Mock?® A —_
D19 Mock?® B —
D20 Mock*® C —

present them in an aggregated form in Table 2: we split the total cumulative
time for each data set into 10 equal intervals, and show the cumulative
number of failures occurring up to each of 10 elapsed time points. From
Table 2 it is possible to construct very rough plots of reliability growth as in
Fig. 1. The original raw unaggregated data are used to fit reliability growth
models.

The experiment is designed as follows. For each data set we select nine
time points, equal to /10 of the total execution time for the entire data set,
k=1,2,3,...,9; foreach of our six simple models (M1-M6), we find the MLE
and make predictions. We have 180 (=9 x 20) data intervals: [0, (k/10)T;*],
k=1,2,3,...,9,j=1,2,3,...,20, where T;* is the total execution time for
data set Dj. Using maximum likelihood estimation, we fit the model Mito the
failure data observed from data set Dj in the interval [0, (k/10)7;°'], then the
fitted model is used to predict the number of failures to occur in the future
interval ((k/10)7;°, T}, for k=1,2,3,....,9, j=112, 3,...,20 and i=
1,2,3,...,6. Let i(j, k) equal the number of predicted failures for data set Dj
in the time interval ((k/10)T;, T;*"], predicted by model Mi fitted to data
observed from data set Dj over the time interval [0, (k/10)T;']. Let n(j, k)

iive
itive
rom
15in
ywth

nine
| set,
JALE
’}h:(]'
* tor
y the
1 the
ture

1=

:t Dj
Jata
J.k)

Software reliability growth models 107

TABLE 2
Cumulative Failures Occurring in Percentage of Total Time
Duta Elapsed percentages of time
sel

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Dt 49 74 85 93 104 114 122 128 132 136
D2 20 28 30 41 42 46 48 50 52 54
D3 22 24 28 30 30 33 35 335 36 38
D4 24 37 45 50 50 50 51 1 51 S3
D3 53 103 153 172 192 235 251 264 273 288
D6 15 26 32 33 47 58 66 68 69 73
D7 5 23 25 28 3 33 39 40 40 41
D8 63 75 76 78 79 79 85 89 92 101
D% 74 103 123 137 146 146 152 135 158 163
D10 7 16 24 27 30 33 36 36 36 38
Dit 28 50 54 68 79 87 93 97 99 100
D12 14 20 27 3 38 50 60 65 70 15
D13 23 38 6! 62 73 80 98 102 1o . 117
D4 25 48 78 89 98 127 133 142 167 179
Dis 44 69 95 106 129 137 162 170 185 210
D16 15 28 39 49 54 60 68 71 75 81
D17 36 74 100 117 1435 158 175 189 198 207

DI I 20 29 K 33 38 40 41 42 43
D1y 21 27 n 33 34 35 36 37 38 40
D20 2 4 6 10 12 14 14 14 16 17

equal the observed number of failures for data set Djin (k. 10)T, T;*']. The
prediction errors are

e, kY= nj.k)—n(j k)
and the relative prediction errors are

rj, k) = (A, k) = nj k) n(j k)
i=1...,6j=1...,20and k=1,....,9

(For the 20 data sets there happens to always be at [east one failure in the last
interval. so we avoid division by 0.) The prediction errors and the relative
prediction errors for model M3 are tabulated in Tables 3 and 4, respectively.

For each super model (M7-M14) we have a selection criterion. Based on
these criteria, each one of the super models chooses one of the simple models
and makes a prediction. For i=7,8,9....,14, j=1,2,3,...,20 and k=
1,2.3,....9. let ¢,(j, k) equal the index of the simple model (1, 2, 3, 4, 5 or 6)
that super model Milikes the best for data from data set Dj over the interval
[0.(k;10)T;*']; for example, Table 5 shows the choices made by model M8,
which uses Kolmogorov-Smirnov goodness-of-fit as its selection criterion.

108 Peter 4. Keiller, Douglas R. Miller

TABLE 3
Prediction Errors, (), k), for Model M3

Data Percentage of time clapsed

sel
10% 20% 30% 40% 50% 60% 70% 80% 90%a

D1l -228 10 —-87 —-120 -64 17 08 14 04
D2 =27 -47 -110 36 -—-11 05 -~02 -04 -03
D3 199 -08 05 -02 =27 =07 01 -2 -l
D4 251 12 200 1771 95 52 34 12 -06
Ds 2420 2270 220 2662 0-8 12:6 234 -2 05
D6 -365 —-163 —186 =271 -—24 148 14-8 52 01
D7 1090 108 -08 -16 -1l -5 38 24 0s
D8 542 206 26 -39 -85 127 -9l ~-76 -69
DS 195 -1 g7 127 122 26 27 o4 -1
D10 320 420 420 160 §8 68 62 23 02
Dil 1790 1034 - 41 79 118 -2 9-6 63 25
D12 —-534 —-453 344 275 2440 =29 81 25 07
D13 1130 -108 604 —177 —11'7 —135 51 -16 -04
D14 —1159 —627 716 =231 =365 65 —135 -—174 (13
D1s —174 —548 —282 —382 =260 -363 —141 200 -147
D16 -07 381 132 136 07 06 3 -0y -17
D17 1231 331 44 141 164 39 70 68 2.2
D1y -93 107 276 63 18 52 I8 19 08
D19 38 27 48 17 02 -06 -—-10 =1l -1
D20 101 =&l —-4:0 80 70 63 09 =11 01

Next, model Mi predicts that 7i,(j. k) = A, ;1)U k) [ailures will occur for data
set Dj over the time interval ((k, 10)T;*, T/*']. Errors are then computed as
before; for example, Table 6 shows the relative errors for model M8.

We wish to compute some summary statistics of how the different models
perform over the different data sets, Djj=1,2,3,...,20. There does not seem
to be any obvious best way to summarize the performance. It seems that
relative error is preferred to absolute error in order to prevent one or two
data sets with large numbers of failures dominating the summarizing
statistics. Also, initially we want to summarize over independent test cases.
Therefore we consider average relative errors (averaged over the 20 data
sets) for each of the nine elapsed time percentiles. We consider two averages:

20
The average bias: bk) = Z ri{J, k)/20

ji=1
20

The average deviation: d,(k) =Z|r.(j, k)|/20

i=1

0%

04
03
1t
06
05
01
05
69
11
02
25
07
04
08
47
17

3.9

(%
I
1

lata
Ias

Iels
xem
hat
WO
ing
ses.
ata
aes:

Software reliability growth models

TABLE 4
Relative Prediction Errors. A, k), for Model M3

109

Data Percentage of time elapsed
set
10% 20% 30% 40% 50% 60%% 70% 80% 90%
Dl -0-26 002 -017 -028 -020 -008 0-06 017 0-09
D2 —008 -—018 -046 027 -0tl 006 -003 -010 =014
D3 1124 —-005 005 -002 -034 =015 003 -039 -057
D4 087 1-32 2:50 571 37 1-72 170 058 —-029
D5 103 1-23 1-64 023 001 0-80 063 047 003
D6 —063 -—035 -—-045 -068 -009 098 211 1-05 0-01
D7 4-19 060 —-005 -012 -~0Il =019 191 244 0-49
D8 143 079 010 -¢17 -039 —-038 =057 -063 =077
D9 -022 -002 022 049 072 015 025 005 -022
DIO0 1-03 191 3-:00 1-45 1-10 1-36 309 14 =010
Dtl 219 207 -009 025 057 086 1:32 210 253
D12 -087 —-082 —-072 -065 -065 =012 054 025 014
Di3 120 -014 108 -032 -027 -036 027 =011 =006
Dt4 ~-075 =048 071 -0 -045 013 =029 -047 007
D15 —010 -039 =025 -046 -032 -050 -029 -050 -059
Dl6 -0-01 072 031 0-43 003 =003 024 -008 -029
D17 072 025 004 -016 026 008 022 038 025
DI -029 047 1-97 0-32 18 1-05 1-26 096 076
DIy 020 021 060 0-24 003 =01t =024 =037 =055
D -067 —-063 -036 114 140 21l 019 —-036 0-08

These two average performance measures are tabulated in Tables 7 and 8.
respectively. Finally, succumbing to the temptation to try to quantify the
overall behavior of each model, we compute two grand averages:

9
Grand average bias: b, = Z bik) 9
k=1

9
Grand average deviation: d;= Z d(k)9
k=1

These grand averages are tabulated in Table 9 for the 14 models.

There are many other ways to summarize data. Musa and co-workers*?-3!
used a normalized error (dividing the prediction error by the total number of
failures in the data set); they then summarized by considering the median
normalized error at each elapsed time point. The interested reader has
probably already thought of other variations. One of the open problems in

1o Peter 4. Keiller, Douglas R. Mller

TABLE S
Simple Models Chosen by Super-Model M8

Duta Percentage of time elapsed
set

10% 20% 30% 40% 50% 60% T70% 80% 90%

Dl Ml M1 M6 Mé Mé M6 M6 Mé M6
D2 M6 M2 M2 Ml M3 M5 M3 M5 M3
D3 M4 M6 Mé M6 Mé M3 M3 M3 M3
D4 M2 Mé M2 M2 M2 M6 M2 M2 M6
DS M6 Mé M1 M2 M2 M2 M2 M2 M2
D6 M6 M35 MS M3 M2 M2 M2 M1 M35
D7 M6 Mé M6 M4 M4 M4 M3 M3 M3
D8 M4 M2 M2 M2 M2 Md M4 M4 M3
D% M2 M3 Ml M3 M3 M3 M3 M3 Ml

D10 M Mé M1 Mé M6 M4 M4 Mé M6
Dl M1 Mé M6 Mé M6 M1 M3 M MS
Di2 MS MS Mi Ml M1 M4 M3 M2 M3
D13 M M2 M1 M6 M6 M6 M3 M4 Md

D4 Mé M3 M2 M3 Mé Ml M3 M3 M35
D15 M6 M2 M35 M5 M5 M35 M5 MS M5
D16 M6 M5 M2 M3 Mé M6 M3 M2 M2
D17 MS M1 Mi M2 M3 M3 M3 M3 M3
DIg Mé M5 MS M2 Mé M2 M2 M2 Mé
D19 M6 M4 M3 Mé Mé Mé M6 Mé Mé
D20 M6 M2 M3 M1 M4 M4 M2 Mé M6

this research area is to identify the best ways to define and evaluate
performance statistics.

INTERPRETATION OF EXPERIMENTS

There is a great temptation to end such an experimental investigation with
the conclusion: “The winner is model...". That would be very misleading for
this type of experiment. The experiment is based on only 20 data sets. The
statistical estimation methods, performance measures and general design of
the experiment are quite arbitrary; other choices could be made. It is hoped
that this experiment gives rough ideas of how reliability growth models
perform, what can be expected of them, and of numerous open questions
arising about their usage. However, there are several observations that can
be made from this experiment.

A cursory glance at the size of the errorsin Tables 3,4, 6, 7, 8 and 9 leads us
to the conclusion that the predictions have some value. They are not

Relative Prediction Errors, A, k), for Model M8

Data
sel

Percentage of time elapsed

20%

30%

80%

Dl

D3
D4
DS
D6
D7
D§
D9
Dto
D1l
Di2
D13
Di4
D15
Dié
D7
D18
D19
D20

1-09

—086
—095

095

~064

0-22

—0-99
-0-89
-002
-092
—0-85
-062
—0-50
—0-48
-078

0-85
062
1-30
0-21

-093

~044
~096
~074

0-23
64

-0405
-097
—1.00

022

300

- 102
-0-50

136
072

-025

012
0-54
2-66
053

-036

020
0-04
-039
-093
0-07
1-43
244
—1:00
0-05
066
210
0-28
-011
—047
—0-44
-0-08
0-38
—0-05
=079
~0-89

Average Relative Bias of Predictions. &

Moadel

Percentage of time elapsed

20%%

3075

8075

s

..;mml..a-—o,ﬂl"!

Vi

M
M2
M3
M4
M5
Mé
M7
M3
M9
M0
Ml
MI2
M13
M4

1-24

-023
033
~0-06
0-84
015
0-21
-0-21
0-24
0-64
0-49
~-012
0-46
011

1125

-0-06
0-48
-001
091
-012
033
0-24
-004
065
0-77
0-08
0-77
032

099
-023
033
—-043
0-65
-008
0-28
0-06
038
0-49
0-50
0-27
0-01
0-01

112 Peter A. Keiller, Douglas R. Miller

TABLE 8
Average Relative Deviations of Predictions. d

Model Percentage of 1ime elapsed

10% 0% 30% 0% 50% 60% 0% 80% 90%

M1 1-66 1-31 t-30 141 1-04 1-06 141 1-09 0-70
M2 1-03 0-81 0-91 0-67 059 0-66 0-66 0-57 0-47
M3 0-91 0-63 0-74 0-69 052 0-57 077 0-63 0-40
M4 1:03 0-87 091 0-90 072 074 079 065 0-60

M35 1-3% 1-03 1-06 112 063 07 1-00 0-89 0-59
M6 225 094 0-82 084 0-64 0-67 056 0-89 1-26
M7 113 0-90 0-89 0-80 0-76 094 1-26 0-89 079
M8 1-56 073 0-87 0-68 0-57 0-70 0:70 064 0-57
M9 1-22 0-87 0677 0-66 0-57 074 078 0-85 1-09
M0 1-66 105 116 061 054 0-78 1-05 091 076
Ml 1-38 0-87 116 0-63 0-39 0-64 077 0-50 1-07

M2 1:22 0-76 0-97 091 075 0-67 0-72 0-82 0-49
MI3 1-66 0-83 1-29 075 0-44 072 083 0-60 0-60
M4 1-48 072 1-03 0-65 057 0-62 075 062 0-43

extremely accurate, but they are good enough to be helpful in some
situations. It appears that reliability growth estimates may be useful for
forecasting future maintenance activities on moderately reliable software.
(For a successful application of software reliability growth modeling to
certifying software, see Currit e al.?7)

This experiment is strongly conditional on the data sets used. If one of the
simple models (M 1-M6) was truly a superior fitting model, we would expect
that model to perform best, and we would expect super models (M7-M14)
with good selection criteria to consistently choose that simple model. The
fact that this is not happening suggests that none of the simple models is a
superior fit. Furthermore, the super model approach is not an improvement.
This needs further study, perhaps in a more controlled experiment based on
Monte Carlo data.

There is an interesting trade-off between the two-parameter simple models
(M1, M2 and M3) and the three-parameter models (M4, M5 and M6). The

TABLE 9
Summary Performance Measures for 14 Models

MI M2 M3 M4 M5 M6 M7 M8 M9 MI0O M!I M2 MI3 MI4

1114 —0-20 036 —0-16 074 001 030 006 022 054 048 007 039 010
122 071 065 080 093 098 093 078 083 066 088 08 086 076

SSTRS)

—) o~

e
for
are.

the
et
113
The
s a
ent.
jon

Jdels
The

114

10
76

Software reliability growth models 113

three-parameter models should generally fit better because they have richer
flexibility. However, it is more difficult to fit a higher parameter family,
especially with a general-purpose search algorithm like Nelder-Meade: so
we may not always be getting the best-fitting member of a three-parameter
family. Thus the three-parameter simple models may not be performing as
well as they might with a perfect search algorithm.

There is also a trade-off between ‘goodness-of-fit’ and ‘quality-of-
prediction’. A model that fits the observed data well is not guaranteed to give
good predictions into the future, especially if it is a rich family parameterized
with several parameters. (Akaike?® suggests handicapping parametric
families based on the number of parameters.) The idea of an integrated
‘prediction system'” suggests that ‘quality-of-prediction’ measures should be
used for fitting models. However, in our experiment there is not an obvious
difference between the super models based on the two different conceplts.

There is an effect caused by how the prediction errors are measured. A
model may overestimate the number of future errors by any amount, but it
may underestimate the number by at most 100%. This means that a few wild
overestimates will hurt the average performance (Tables 7, 8 and 9) much
more than wild underestimates (which is probably a more serious error).
This may be making model M2 (which tends to underestimate) appear better
than it really is and model M1 (which tends to overestimate) appear worse
than it really is. A more reasonable error summary might weight an
‘underestimate by one-hall” equivalent to an “overestimate by two-fold’. for
example. There are other possibilities: in fact, how to evaluate and
summarize performance is an open question.

Model M3 seems to be doing slightly better than all others. This model
also performed the best in Musa & Okumoto's*® performance studies using
different summary statistics (median normalized prediction errors).
Nagel*®*% and others have observed a log-linear pattern among occurrence
rates of bugs in a program and hypothesize that this may be a frequently
occurring pattern; Miller'® has shown that this pattern is approximately
modeled by model M3. Another interesting fact is that model M3 plays a
central role among the models M1-MS: see Miller.!® So it is not surprising
that model M3 scores best in Table 9. But. of course, it is all conditional on
the 20 data sets.

Phillips (see Adums*°) has observed that the occurrence rates for bugs in
some large operating systems show a power law pattern which is equivalent
to model M1 (see Miller'®), but model M1 does not perform well for our 20
data sets. For different sets of data the performance of M1 and M3 might be
reversed. This is why we want the freedom to pick the best model for each
piece of software. These experiments imply either that this is impossible or
that we have not figured out how to do it yet.

g

pofti

AE— Y

|

'R

ER B

114 Peter A. Kedier. Douglas R. Mudler

Looking at the prediction errors at the 90% elapsed time point in Tables 3,
4 and 6 reveals moderately sized errors. This should be a fairly easy
prediction problem: we are predicting for a future time interval equal in
fength to & of the previous observed interval. From these moderately sized
errors. we conclude that it is not reasonable to ask these reliability growth
models to accurately predict that software will perform error free for long
future time intervals.

NON-APPLICABILITY TO SAFETY-CRITICAL SOFTWARE

Safety-critical software must be extremely reliable. The question is how to
achieve extremely high levels of reliability. The reliability growth scenario
would start with faulty software. Through execution of the software, bugs
are discovered. The software is then modified to correct for the design flaws
represented by the bugs. Gradually the software evolves into a state of
higher reliability. There are at least two general reasons why this is an
unreasonable approach to highly reliable safety-critical software. The time
required for reliability to grow to acceptable levels will tend to be extremely
long. Extremely high levels of reliability cannot be statistically guaranteed
u priori.

For a discussion of the limitations of the statistical approach to high
reliability, see Miller.*-5 For a good discussion about the reliability growth
scenario, see Gray.!®!” Gray points out many aspects of reliability growth,
some of which are difficult to quantify and thus ignored by the usual
reliability growth models; ignoring these aspects may not lead to
unacceptable results when dealing with nominal levels of reliability. but they
cannot be ignored when dealing with extremely high levels of reliability. See
Hamlet*'*? for discussion of some additional complications.

CONCLUSIONS

We conclude that reliability growth models are useful for predicting the
number of failures over finite future time intervals when we are dealing with
software which is of low or moderate reliability. Maintenance of large
moderately reliable software systems might be usefully predicted by these
models.

There are numerous open questions about software reliability growth
models. When making predictions into the future, it is very important to use
a good model; how to choose the best model is an open question. The
quantification of prediction errors (by confidence intervals or other

L'([q‘ -

2s 3,
:asy
lin
ized
wth
ong

v o
irio
ugs
JWS
> of

an
ime
ely
ced

ugh
wih
vth,
ual

the
Ath
ree
i€Se

rth
use
[he
her

Software reliability growth models 115

methods) is yet to be solved. The best ways to evaluate performance of
models have not been identified.

Our experiment shows that an apparently reasonable way to improve
reliability growth modeling prediction based on super models results in no
improvement. This may be due to the particular data sets we used or to other
factors mentioned in the paper. A controlled Monte Carlo study may be
usefulin answering these questions. Regardless, the experiment reveals some
of the problems arising in reliability growth modeling.

Through this experiment and the errors calculated, we have tried to
convey a rough idea of how well software reliability growth models perform.

ACKNOWLEDGEMENTS

P. A. Keiller thanks Fred Waters for many helpful discussions. D. R. Miller
gratefully acknowledges research support from the National Aeronautics
and Space Administration, Grant NAG 1-771.

REFERENCES

{. Eckhardt.D. E. & Lee, L. D.. A theorcetical basis for the analysis of multiversion
software subject to coincident crrors. [EEE Transactions on Software
Lngincering, SE-12 {1985) 1311-16. _

2. Littlewood. B.. A reliability model for systems with Markov structure. Applied
Statistics, 24 (1973} 172-7.

3. Littlewood. B. & Miller, D. R.. Conceptual modelling of coincident failures in
multiversion software. JEEE Transactions on Software Engineering (in press).

3a. Tannino, A, Musa, J. D., Okumoto, K. & Littlewood. B.. Criteria for software
reliability model comparisons. ACM Sigsoft Software Engineering Notes, 8(3)
(1983) 12-16. .

4. Miller. D. R.. Making statistical inferences about software reliability. 1986 Joint
Statistical Meetings Invited Paper. Chicago. August 1986. Available as CR-
4197, National Aeronautics and Space Administration, December 1988.

5. Miller. D. R., The role of statistical modeling and inference in software quality
assurance. In Software Certification. ed. Bernard de Neuman. Elsevier Applied
Science. London. 1989, pp. 135-52.

6. Jelinski, Z. & Moranda, P. B. Software reliability research. In Staristical
Computer Performance Evaluation, ed. W. Freiberger. Academic Press. New
York. 1972, pp. 465-84.

- Abdalla-Ghaly, A, A., Chan, P. Y. & Littlewood. B.. Evaluation of competing
reliability predictions. JEEE Trunsactions on Software Engineering, SE-12
(1986) 950-67. '

. Dale. C. J. Software reliability evaluation methods. ST-26750, British
Acrospace, September 1982,

e |

[2,:]

o

116

Peter A. Keiller, Douglas R. Miller

Dale, C. I, Software reliability models. In Software Reliability: State of the Ari
Report 14:2.ed. A. Bendell & P. Mellor. Pergamon Infotech, London, 1986,
pp. 3144,

Farr, W. H., A survey of software reliability modeling and estimation. AD-
A154.874, Naval Surface Weapons Center, Dahlgren, VA, 1983.

. Goel, A. L. Software reliability modelling and estimation techniques. RADC-

TR-82-263. Rome Air Development Center, Griffiss Air Force Base, New York,
1982.

Littlewood. B. & Verrall, J. L., A Bayesian reliability growth model for
computer software. Journal of the Royal Statistical Society. Series C (Applied
Sratistics). 22 {1973) 332-46.

Littlewood. B.. Stochastic reliability-growth: a model for fault-removal in
computer-programs and hardware-designs. JEEE Transactions on Reliability,
R-30 (1981) 313-20.

Duane, J. T. Learning curve approach to reliability monitoring. [EEE
Transactions on Acrospuce, AS-2 (1964) 363-6.

Crow. L. H.. Reliability unalysis for complex repairable systems. In Reliability
and Biometry: Statistical Analysis of Lifelength.ed. F. Proschun & R.J. Serfling.
SIAM, Philadelphia, PA, 1974, pp. 379—410.

Gray. C. T.. Superposition models for reliability arowth. PhD thesis, University
of Birmingham, 1985.

. Gray, C. T. A framcwork for modelling software rehability. In Software

Reliubiliny: State of the Art Report 14:2.¢d. A. Bendell & P. Mellor. Pergamon
Infotech. London, 1986, pp. 81-94.

. Miller, D. R.. Exponential order statistic models of software reliability growth.

CR-3909, National Acronautics and Space Administration, July 1985
(Abridged version: [EEE Transactions on Software Engincering, SE-12 (1986)
12-24)

_ Miller. D. R. & Sofer. A.. A nonparametric approach 1o software reliability

using complete monotonicity. In Software Reliability: State of the Art Report
14:2.ed. A. Bendell & P. Mellor. Pergamon Infotech. London. 1986. pp. 183-95.
Musa. J. D. & Okumoto, K., A logarithmic Poisson execution time model for
software reliability measurement. Procecdings of the 7th Inicrnational
Conference on Software Engineering. IEEE Computer Society Press, Washing-
ton, DC, 1984, pp. 230-8.

. Musa, J. D. & Okumoto, K., A comparison of time domains for software

reliability models. Journal of Systems and Software, 4 {1984) 277-87.

_ Goel, A. L. & Okumoto, K.. Time-dependent error-detection rate model for

software reliability and other performance measures. [EEE Transactions on
Reliability, R-28 (1979) 206-11.

Okumoto, K., A statistical method for software quality control. [EEE
Transactions on Software Engineering, SE-11 (1985) 1424-30.

Nelder, J. A. & Mead, R., A simplex method for function minimization.
Computer Journal, 7 (1965) 308-13.

Chan, P. Y, Software reliability prediction. PhD thesis, City University,
London, 1986.

Brocklehurst, S., Private communication, 1988.

. Keiller, P. A, Littlewood, B., Miller, D. R. & Sofer, A, Comparison of software

reliability predictions. [3th International Symposium on Fault-Tolerant

£

~Art
986,

AD-

DC-
“ork,

for
slied

il in
iity,

EEE

wliry
ling.

rsity

wdre
man

wih.
XS,
DALY
ulity
port
-935.
{ for

mal
[ng-

vare

for
Yy ol

“EE
‘ion.
sity,

vdare
rant

Software reliability growth models 117

Computing, Digest of Papers. IEEE Computer Society Press, Washington, 1983,
pp. 128-34.

28. Dawid, A. P, Statistical theory: the prequential approach. Journal of the Royal
Statistical Society, A, 147 (1984) 278-92,

29. Akaike, H., Prediction and Entropy. Mathematics Research Center, University
of Wisconsin, Madison, Wisconsin, USA, June 1982.

30. Littlewood, B. & Keiller, P. A, Adaptive software reliability modelling. /4th
International Symposium on Fault-Tolerant Computing, Digest of Papers. IEEE
Computer Society Press, Washington, 1984, pp. 108-13,

30a. Chan, P. Y, Adaptive models. In Software Reliability: State of the Art Report
14:2, ed. A. Bendell & P. Mellor. Pergamon Infotech, London, 1986, pp. 3-18.

31. Musa, J. D, lannino, A. & Okumoto, K., Software Reliability: Measurement,
Prediction. Application. McGraw-Hill, New York, 1987.

32. Musa. J. D, Seftware reliability data. Data and Analysis Center for Software,
Rome Air Development Center, Rome. New York, 1979.

33. Sukert. A. N, A software reliability modeling study. Rome Air Development
Center. Technical Report RADC-TR-76-247, Rome, New York, 1976.

34. Musa, J. D, Private communication, 1988.

35. Miller, A. M. B.. A study of the Musa refiability model. MS thesis, University of
Maryland, College Park, MD, 1980.

36. Mock. G., Compurison of some software reliability models for simulated and
real faitlure data. 4th TASTED (International Association of Science and
Technology for Development) International Symposium and Course "Modcl-
ling and Simulution’, Lugino, haly, 21 -24 June 1983

37. Curnit. P A, Dyer. M. & Mills, H. D Certifying the reliability of software. JEEE
Transactions on Software Engineering, SE-12 (1986) 3-11.

38. Nagel. P M. & Skrivan, J. AL Software refiability: repetitive run experimenta-
tion and modeling. NASA CR-163836. 1982,

39. Nagel. P. M. Scholz, F. W. & Skrivan, J. A Software reliability: additional
investigations into modeling with replicated experiments. NASA CR-172378.
1984.

40. Adams. E. N., Optimizing preventive service of software products. /B M Journal
of Research and Development, 28 (1984) 2-14,

41. Hamlet. R. G., Probable correctness theory. luformution Processing Letrers, 25
(1987) 17-25.

42. Hamlet. D. & Taylor, R.. Partition testing does not inspire confidence.
Proceedings of Second Workshop on Software Testing, Verification. and Analysis.
IEEE Computer Society Press, Washington, DC, 1988, pp. 206-15.

Appendix 3

M. Lyu, H. Hecht, H. Kopetz, D. Miller,

Siefert, "Research and Development Issues in Software Reliability

Engineering," Proceedings of the IEEE International Symposium on
Software Reliability Engineering (1991); 80-89.

J. Musa, M. Ohba, and D.

(Reprinted in Software Engineering Notes 16,2 (1991): 23-30.)

PANEL: RESEARCH AND DEVELOPMENT ISSUES
IN SOFTWARE RELIABILITY ENGINEERING

Panel Chair: Michael Lyu

Panelists: Herbert Hecht
Hermann Kopetz
Douglas Miller
John Musa
Mirs Ohba
David Siefert

Introduction

Michael R. Lyu, University of lowa

Computers arc bringing revolutionary changes o our
life with their involvement in most human-made sys-
ems for scnsing, communication, control, guidance and
decision-making. As the functionality of computcr
opcrations becomes more essential and complicated in
the modem socicly, the reliability of computer software
becomes morc important and critical.

Rescarch activitics in software reliability cngincering
have been vigorous in the past 20 ycars. Numcrous
statistical modcls have been proposed in the literature
for the prediction and cstimation of software reliabil-
ity, and many rescarch efforts and paradigms have been
conducted for the design and engineering of reliable
software. However, there seems 10 be a gap in between
the achicvements of software reliability rescarch and
the results from software reliability practice. We keep
on hcaring troublesome software projects, horrible
software failures, and misconceptions in software reli-
ability applications.

It is the purpose of this panel to bring together
rescarchers and practitioners of this field o discuss
the software reliability problems which will have
tremendous impact to our daily life. The panel is
expected o raise research and development issues
under this concemn, to address existing and potential
problems, 1o resolve some misunderstandings and
conflicts, and to reach a fundamental basis for the

TH0336-5/91/0000/0080$01.00 © 1991 IEEE

80

(University of lowa)

(SoHaR Inc.)

(Technical University of Vienna)
(George Mason University)
(AT&T Bell Labs.)

(IBM Corporation)

(NCR)

advancement of this ficld.

The panclists arc invited o discuss those topics includ-
ing, but not limited 10, the following:

(1) What arc the most urgent needs for software rclia-
bility practitioners?

(2) What kind of issucs practitioncrs would like
rescarchers to pursue?

(3) Did practitioners get satisfactory results from
software reliability rescarchers?

(4) What arc the most challenging softwarc rcliability
issues rescarchers are facing today?

(5) Did rescarchers gain cnough support 10 perform
software reliability rescarch?

(6) What kind of inputs or feedbacks researchers are
sceking from practitioners?

() What practices should be devcioped and con-
ducted based on the current rescarch results?

(8) What is the gap in between software reliability
modelers and measurers? How to abbreviate it?

(9) What kind of multi-institutional efforts have
been, or should be conducted for acquiring
software reliability standards, handbooks, bench-
marks, database, lools, etc.?

The following sections consist the position stalements
written by each panclist under the panc! title and the
suggested topics.

ORIGINAL rAGE 1S
OF POOR QUALITY

PREGEDING PAGE BLANK NOT FiLMED

Quantitative and Qualitative Concepts
Herbert Hecht, SoHaR

For Project Managers the reliability of the compating
function as a whole is of primary concem, and for that
purpose a combined quantitative hardware/software reli-
ability expression is required. The responsibility for
hardware and software functions is frequently separated
immediately below the project management level, and
therefore the project manager also nceds semarate
models for allocating and controlling the achievement of
adequate rcliability. For these purposes broad staistical
reliability metrics are suitable, particularly failures per
unit lime of computer usage or time unit loss of com-
puter availability due to failures. Examples: failures per
CPU-hr or outage-hrs per month.

The software manager is responsible for achieving the
statistical rcliability goals but in order to know where
and how to improve the reliability more specific meas-
urcments arc required. Quantitative approaches hase so
far been only of limited use in this domain. Asdits,
employment of software devclopment and test tools, and
test planning arc largely guided by purcly qualimtive
considerations, Therefore there exists at present nocon-
sistent mcthodology that permits the software mamger
o meet the quantitative requirements imposed by sys-
tcms considerations with the tools at their disposal.

Two activitics can bring about a connection betwees the
quantitative and qualitative approaches, and can previde
sorcly nceded advances toward achicving more rekable
soltware. The first activity is the quantitative analysis of
failures in terms of software development and test iech-
niques that could have prevented them. The ressling
data, parucularly if they arc weighted by severity of the
failurc, can provide the software manager with comrete
information on the means of improving the rcliabiliey of
his/her product.

The second step deals with the usc of quantitative data
as a test termination criterion. The present practike of
ending test on the basis of schedule, budget, or (is the
very best cases) attainment of a period of failure free
opcration, provides little useful feedback 1o the wam
that devcloped the software or for the test plannimg in
other projects. Reliability growth measurement dwring
formal test will permit termination on demonstration of
a defined reliability level and will also provide insghts
into the effectiveness of different development and test
mcthodologics.

T will present examples of these integrated practices.

81

Reliability of Real Time Systems

Hermann Kopetz, Technical University of Vienna

Since my background is in the area of fault-tolcrant dis-
tributed real-time systems, my view is determined from
this position.

In hard real-time systems, i.e., systems where a failure
can have catastrophic conscquences, a result must be
correct, both in the domains of value and time. Since the
behavior in the domain of time depends on the proper-
tes of the underlying hardware, an integrated
software/hardware view has to be taken. The {unctional
correctness of the software per se (i.c., correctness in the
value domain) is not sufficient.

Many failurcs of real-time systcms are rclated 10 syn-
chronization and performance errors which manifest
themselves as ‘transient’ system failures. In a failurc
statistics of a complex real-time system [Gebman 19881,
it is rccorded that less than 10% of the failures obscrved
in the operation of the system can be reproduced within
the sophisticated test environment. Similar results have
been reported by other manufacturers of real-time sys-
tems. This implics that we do not fully understand the
character and the interactions of the exceution scquences
which unfold over time in complex real-time systems
and do not know how to build cffective test procedurcs.

This problem has to be attacked from the perspective of
design. We have to build real-time architectures that are
easier to rcason about. Most of the present day real-time
sysicms arc evenl triggered, i.c., as soon as an cvent
occurs, the computcr system lakes a decision whether 10
process the task associated with this cvent immediately
or the dclay processing until sometimes later. These
dynamic scheduling decisions can takc a significant
amount of processing time, which is then not available
for the application software. Every diffcrent order of
the events can give rise to a different scheduling deci-
sion and thus to a diffcrent exccution scquence. The
potential input space of event-triggered systems is enor-
mous. It is difficult to reproduce an input sccnario
because the exact timing of input cascs cannot be con-
trolled easily. There arc no methods known which can
be applicd to rcason forthally about the timing bchavior
(i.e. the performance) of complex rcal-time systems.

If we introduce a time-granularity in the system opera-
tion by looking at the cvents only at predefined points in
the time domain (i.e., a ime triggered architecture), the
plurality of input cascs can be substantially reduced.
Furthermore, static scheduling strategics become feasi-

ORIGUNAL FAGE 1S
GF POOR QUALITY

ble. The system structure will be more reguiar, ie.,
more predictable and casier 10 understand and test. The
price paid for this reduction in complexity is a reduced
flexibility.

We fecl that in the field of rcal-time sysiems every cffort
must be made to make the system clear and understand-
able. In our rescarch on distributed rcal-time systcms
[Kopetz 1989] this has always been our primary goal.
We have found that time-triggered real-time software is
inherently easicr 1o understand and test than event-
triggered software. Further research efforts in this arca
scem 10 be well justified.

Statistical Issues in Software Reliability
Engineering Research and Development

Douglas R. Miller, George Mason University

There afe two major issucs concering software reliabil-
ity: achicvement and assurance. They are both very
important. Obviously, software in critical applications
must achicve high rcliability in order for the system o
function safcly. But it is also necessary 1o have strong
"3 priori” assurance that the softwarc is highly rcliable
before it can be put into use. For cxample, without rea-
sonable assurance that high rcliability has been
achicved, flight critical avionics softwar¢ in commercial
aircraft should not be certificd for public usc.

So, the central focus of Software Reliability Engincering
R&D is mcthodologies for achicving and assuring
required levels of software rcliability. The goal is reli-
able software. How do you do it? How do you know
when you've done it? Furthermore, what are the most
efficicnt ways to achieve and assure the reliability?

A central idea concerning reliability is "uncertainty.” A
given piece of software may or may not contain design
flaws which will manifest themselves as system failures
when the software is used at some time in the future.
The point is that uncertainty is inherent (0 this
phenomenon: we do not know if failures will happen
and, if they do, when they will happen. To deal with
this uncentainty, a scientific approach should be taken.
The scientific approach involves experimentation, data
collection, statistical modelling and analysis, and draw-
ing inferences and conclusions which will support deci-
sions about developing, testing and using software. The
existence of probability seems inevitable here. Tt is
necessary 1o quantify the uncerainty in terms of proba-
bilities of various events occurring.

82

Bascd on information or data conceming software
dcvclopment, testing, previous failurcs, the usage
cnvironment, and any other observables, we would like
10 estimate (with confidence) the probability that a par-
tcular picce of software fails during a given time inter-
val.

Reliability growth models atiempt 10 ¢stimate current
rcliability and predict future rcliability growth for a
given picce of software. These modcls basc their csti-
mates and predictions only on past failurc umes of the
given picce of softwarc. [BM's Clean Room used relia-
bility growth modcls successfully. At the May 1990
Meeting of the IEEE Subcommitice on Software Relia-
bility Engincering, Successes were also reported by
AT&T, HP and Cray Rescarch. Unforwnatzly, the rclia-
bility growth modeliing approach is limied in many
ways: The models trcat the software as a biack box and
are only valid for random batch (memoryless) testing or
usage. The distribution of usage must be wcll know.
The models do not make usc of additional d-u or infor-
mation which comcs out during testing or usage. The
approach does not give uscful estimates for extremely
high levels of rcliability (¢.g., avionics software and
other safcty-related systems).

There are many factors which contribute 10 the rehiabil-
ity of a picce of softwarc. Casc studics such as those
sponsored by NASA Goddard's Software Engincering
Laboratory cxplore the cffect of vurious factors on
software quality. Factors of interest include diffcrent
development scenarios, different lesting strategics,
characteristics of programmers, and others. 1t can be
shown that softwarc quality corrclales with various
known factors, but calculating rcliabilitics from thesc
factors scems difficult if not impossible. Onc very
important category of information which should have
significant value in predicting reliability of a picce of
software is the programmer’s personal subjective ¢sti-
mate of its reliability, especially after he has secn and
done a post mortem on the first few bugs discovered.

Current practice is often based on engincering judge-
ment. For example, commercial avionics software must
be produced following guidelines presented in DO-
178A, "Software Considerations in Airborne Systems
and Equipment Certification,” preparcd by Special Com-
mittee 152 of the RTCA and currently under revision by
Special Committee 167. If appropriate documcntation
supports compliance, the FAA certifics the software.
The actual software is never examined as part of the
certification. A major challenge facing the discipline of
Software Reliability Engincering involves justifying this

ORIGNAL FACY IS
Or PCOR QUALITY

type of approach (also contained in various Military
Standards) in some objective, scientific sense.

To summarize: i)For certain classes of software pro-
jects, quantitative reliability estimation and prediction is
possible (and is done) for individual programs.
i)Through general case studics it is possible to identify
factors effecting reliability and thus a get qualitative
sense of what constitutes good software development
practice. iii)For many critical software sysiems requir-
ing high reliability, the approach to reliability is very
subjective.

It is clear that a quantitative, objective approach to
software reliability should be applied to more software
projects. This means going beyond the current practice
of software rcliability growth modelling. The key scems
10 be: Tt is necessary 1o use available data much more
cfficiecndy (and imaginatively). There are two
catcgories of data sources: Additional data can be col-
lected (and wscd) specific to any particular picce of
software whosc rcliability is being assessed. More
importantly, there is data from similar and related picces
of existing software; I don't think we know how to make
cffective use of this data,

The goal is better quantitative understanding (and
cxploiation of that knowledge) of many software
phenomena: behavior of real-time control systems, intri-
cacies of fault-tolcrant systems, cfficacy of testing,
identificaion of usage distributions, ctc. All this
knowledge is related to classes of softwarc. (It is ncces-
sary to understand morc than single softwarc systcms
individually, onc at a time.) Software metrics must be a
key feawre in this gencral quantitative understanding,
because the similanty between picces of software must
be measured in order to define classes of software,

To progress it is necessary to acquirc data. An idcal (but
expensive) source is controlled experimentation. For
cxample, NASA Langley continues to sponsor experi-
ments where replicated software is written. A beuer
understanding of replicated batch-processing software
has emerged from such experiments. Current experi-
ments should improve understanding of replicated real-
ime control software. A second general source of data
are real software projects. A prime example is the data
collected and published by Musa; his data stimulated a
flurry of activity in reliability growth modelling. Such
experimentation and data collection is crucial. Experi-
menting and collecting useful data across general classes
of software projects is a tremendous challenge.

SRGNAL PAGE 1S
OF PCOR QUALITY

83

The Software Relihbilily Gap: An Opportunity
John D. Musa, AT&T Bell Labs.

We are in the middle of both a problem and an oppor-
tunity. I like to call it the *‘software reliability gap™
because the needs of software customers have outrun the
current practice of software engineering. You can’t tell
whether they have outrun the technology, because there
is much technology that hasn’t been refined and applied.

The core of the problem is that intense intemational
competition has made unidimensional needs obsolete. If
we only nceded 0 add reliability to software products,
we would have many tools and methodologies to help
us. The problem is that other customer requirements,
such as level of cost and delivery date, would not be
met. Customers have multidimensional needs that are
interdependent and hence must be sct and met more pre-
cisely than ever before. The precision required can only
increase in the future.

Thus measurement is incvitable. Models are also inevit-
able; we need to know the factors that influcnce product
attributes and how much cach of them docs, so that the
softwarc development process can be controlled 1o yield
the desired objectives for the atributes. In short, com-
petition is creating a technological vacuum or gap.

The principal quality attributes that customers cite as
being significant are reliability, cost, and delivery date.
Softwarce reliability engincering is the last to develop of
the three technologics supporting the measurement and
modeling of these attributes. It is the keystone that
makes quanutative software quality engincering possi-
ble. Since quantitative hardware quality engincering
alrcady exists, the development of softwarc reliability
engincering also makes quantitative system quality
engineering possible.

Thus there is an enormous and rare opportunity to fill a
widening gap, which makes this an exciting and chal-
lenging time.

What must software rcliability enginecring do to meet
the challenge? In my opinion, several general things:

(1) We need to inducc a varicty of projects to try it
This is alrcady happening, but greater varicty
would be uscful. Carc must be taken that it be
applied comrectly.

(2) 'The cxpericnce on thesc projects must be
rccorded, critiqued by others knowledgeable in

the ficld (to guard against misinformed applica-
tions), and published.

(3) Published experience should be organized and
digested, so it can be more casily laught 10 practi-
tioners and future practitioners.

(4) Problems that are blocking further progress and
opportunitics for new arcas of application need to
be identified, and they should be addressed by
rescarchers,

These activities clearly offer major possibilities for prac-
titioners, rescarchers, and cducators. People who
acquire and use software play an important role in clari-
fying the nceds of the customer that are at the core of
the driving forces acting on software rcliability
enginecring.

Can I say anything morc specific? 1 would like 1o close
by entering brainstorming mode and throwing out some
thoughts for you 1o discuss:

(1) We necd rescarch to tic software reliability more
strongly 1o the carlicr part of the decvclopment pro-
coss. Part of this cffort involves deermining how
fault density is affected by product and process
variables.

(2) Liule has been done to fulfill the promisc of
software reliability engincering for cvaluating
software engincering methodologies and 100ls.
We need to help people do this.

(3) We nced data on human and computer resource

usage in test, so that resource usage paramelers
can be determined.

(4) The ATAA software reliability engineering guide-
lines effort, which includes development of a
handbook, looks promising. Because of the diver-
sity of contributors involved, it will be important
1o devole much effort 1o interaction between and
integration of their views. We don’t want a cata-
log.

(5) We need to strongly support our newsletter and
our conference through personal participation in
exchanging practical experience and research
results. We need to keep the exchange flowing all
year through our working committees.

(6) We need software tools (with as many generic
elements as possible) to record as large a propor-
tion of failures as possible automatically, particu-
larly in the field but also in test. We need to
integrate this system with manually-reported
failure systems, but consider implementing the

manual reporting online rather than on paper,

() The Softwarc Enginccring Institute has a mctho-
dology for asscssing the quality fevel of software
development processes. It docs not currcndy
directly include a software reliability engincering
program among its assessment criteria. It should,
and we should discuss with them how to add it.

[hope you will not only discuss these idcas here, but
chew on them later as well. [hope you will add 10 this
necessarily partial list of opportunitics for action. | hope
you will then scize some of them that appeal 1o you, anc
return as significant contributors next ycar of the year
after.

Software Reliability Engineering
from Japanese Perspective

Mits Ohba, IBM Corporation

"The wave comes from the East.”

Both the computer technology and the quality control
mecthod were invented and matured in the US, and they
were brought into Japan later. Japan has so far caught
up quickly and become competitive in both arcas. Espe-
cially, Japan is vicwed as the fcader in the arca of qual-
ity control and quality management.

“Technology transfer begins when it is imported.”

If we carefully review the processcs by which Japan has
caught up and gone further, we can find somc similar
patterns of technology development. The processes gen-
erally begin at the importing phase where technology is
investigated and evaluated. Then there is the deploy-
ment phase, the migration phase, and finally, the Japani-
zation phase.

"How does it go through?”

The deployment phase is the phase where the imported
technology is widely used and the know-hows associate
with it are accumulated. The migration phase is the
phase where components of the technology are adjusted
for the target environment(s). The Japanization phasc is
the phase where something additional and unique to
Japan is added to the technology.

"How has Japanese software engineering evolved?”

Software engineering is a case in point. It was intro-
duced into Japan in 1977, which was two ycars later

than the first [EEE Transaction on Software Engineering
issued. Two years were spent on the importing phase
followed by two years of deployment. The migration
phase began in 1982 and lasted six years. The Japaniza-
tion phase began in 1988. An example of the Japaniza-
tion phase is what has become known as the "Software
Factory” concept.

"Software reliability research is not an exceplion.”

As a domain of research, sofiware reliability engineer-
ing is not an exception to the Japanese process. The ear-
lier work done in the US by Musa, Goel and Okumoto
drew the attention of Japanese reliability rescarchers as
their new field of study.

"What have Japanese rescarchers done in this field?"

To date they have: 1) evaluated the basic models pro-
poscd by the American researchers by applying them to
rcal project data, 2) modificd the models in order to fit
the data, 3) developed ncw models by examining the
implicaton ‘of data and the assumptions of the basic
models, and 4) addressed the new rescarch issucs of
modcls to be resolved.,

"Software factory did not nced theorics.”

On the other hand, software rcliability engincering as a
practice has cvolved differendy. It was begun as a
branch of softwarc quality control practices in order to
determine whether a product developed by a vendor was
acceptable. The logistic curve model and the Gompertz
curve modcl were widely uscd in the industry and
became de facto standard models for software factorics.

"Technology transfer is really the problem.”

The implementation 6. the theory which has been
developed by Japanese researchers is very slow. This is
because the old modcls, with which the practitioners are
familiar, are still sufficient for their needs. They will not
change as long as the old practices work or until they
recognize the advantages of the new theory. This is
similar o the fact that people had belicved the stars were
rotating.

"How can we convince the people that the earth
rotates?”

The most serious issue of software reliability engineer-
ing as a practice in Japan is the education of the people.
It is similar to teach them that the earth rotates, not the
stars. The models are not crystal balls. Prediction is
made bascd on a sct of assumptions, If the assumptions
are not valid, a modcl based on them becomes a great

83

nonsense. The Gomperntz curve fits most of practical
project data because of its flexibility. But, no one can
explain what the model really means.

"Why do we believe that the earth is rotatng?"

The most serious issue as a domain of rescarch is to
explain the relationship between test cases and reliabil-
ity growth using reasonable models, which is also simi-
lar 1o explain the reason why the earth seems to be rotat-
ing. What software reliability growth tells is characteri-
zation of the state of software under evaluation. Tt docs
not tell how we can improve testing. Obviously, time is
not the real factor for improving software reliability dur-
ing the test phase.

"Can measurements and data be standardized?”

A serious issue for both practitioners and rescarchers is
o establish standard ways of measuring softwarc relia-
bility in practice. The modcls arc based on a sct of
assumptions. The models should be catcgorized based
on 1) what they can predict (c.g., MTTF, number of
crrors), 2) what type of data they nced (c.g., lime
between failures, number of failurcs betwecn obscrva-
tions), 3) what assumptions they arc based on, and 4)
what type of softwarc thcy can analyze.

Back To The Future
David Siefert, NCR

For the past 20 ycars, Software Engincering has pro-
vided us with the capability for producing highly rcli-
able software, Software reliability is achicved, in part,
through the applied discipline of standardized practices,
methodologies, tools, and processes comprising the "sci-
ence” of Software Engincering. Today, dependence on
automation is grealer than at any point in time in the
world’s history. Highly reliable products are expected
and assumed! The very nature of the leve! of sophistica-
tion and complexity of modem systems are intended 1o
be transparent 1o the end-user.,

Applying Software Reliability Engineering Discip-
lines

Interestingly, the same practices, methodologics, ctc.
that lead to the development of reliable software arc also
the downfall! Why after all these years of "lcamning” is
the world stll not applying and improving Softwarc
Engincering disciplincs ctc.? Why do practitioners still
develop and maintiin software based upon the

approaches uscd 20 years ago (lack of applicd discip-
linc)? Why is it that rescarchers do not yel know
exactly what is the minimum that should be done 10
develop reliable software? In support of consistently
producing rcliable softwarc, why after 20 years is there
still not a national database leading to the consistent pro-
ject data collection, analysis, and ultimate determination
of practices, tools, and therefore required disciplines?
Shouldn't a Software Enginecring "Blucbook™ exist?

Software Reliability Enginecring is addressed in the fol-
lowing two ways:

(1) Technical Aspects of Software Reliability
Technical software reliability consists of many
items. Delermining reliability goals is one
activity. Reliability goals are typically referred 1o
in "technical” terms. These technical terms are
placed in product specifications. As it periains Lo
Software Reliability Engincering, these lerms or
goals are then tracked through product production
to the achicvement of the goals. The environment
that the software was produced in, plays a
significant impact on the results. These specificd
reliability goals often are determined through the
application of softwarc rcliability models. An
AIAA cffort addressing Software Reliability is in
the process of providing guidance to industry on
which modcls to use and when, The compuling
industry has yct to standardize these specific
modecls.

(2) End-User Software Reliability

The sccond form of Software Reliability
Enginecring is that of the end-user. The technical
specifications which include the software reliabil-
ity goals are expected to be mapped directly to the
end-user’s needs and expectations. Too often
there is no known methodology to take qualitative
and rather subjective unstructured feedback from
the end-user and transform them into quantifiable
and technically oriented input for use in determin-
ing software reliability. Without this methodol-
ogy, there will remain to be software reliability
difficulties. Meeting "specification” infers meet-
ing the end-user's expeclations. Meeting
specification is certainly one essential form of
measurement. Technical specifications are the
result of analysis of the end-user’s expectation -
not the other way around. Too often the technical
specification and the end-user’s expeclations are

86

distinctly scparatc with no rclationship between
cach other. This rcsults in minimal confidence
that the product will achicve it’s cxpeelatons.

Environmental issucs arc also important. To understand
software reliability, one must understand the cnviron-
ment software resides. The cnvironment for software is
systems! System components include other software
and hardware. Reliability should be computed or budg-
cted in such a manncr that reliability for cach of the
components of the computer environment can be deter-
mined, evaluatcd, measurced, and tracked scparatcly
Reliability should also address a "towl” sysicm or
enterprisc-wide solution. Typically, the end-uscr 1
affected by using or expericneing the "total” syster
They typically have no ability to deciphar the type ¢
defect or anomaly that has occurred. Tt is not clear tha
they should. At any rate, Software Reliab.hily Enginecer-
ing nceds to address the "total” sysiem as well as the
individual system componcnts.

The Softwarc Engincering community has reliability
models that lcad to establishing rcliability goals. "High
Confidence” goals (outputs) produced through the usc of
these models are dependent upon past history. This his-
tory should be rcuined in the form of a datbase.
Intcrestingly, no new significant software cstimation
modcls have been revealed in the past S ycars. Without
the usc of such databases as input to and the "wning” of
such modcls, the community is no closcr (o cstimating
with high confidence levels the goals produced from the
modcls as was ablc to bc attained S ycars ago. The
goals produced through the usc of these modcls may not
be any better than the "guess” of you or [.

Besides past history, the technically specified soltware
reliability goals are established and dependent on some
basic items of information:

- How is end-user’s "needs” quantificd?

- What is a software error, fault, and failure?
- What are the categories of software?

- How is Defect and Fault Density computed?

- What and how is line-of-code or Function Point,
. by language, determined?

- How is line-of-code or Function Point translated
between languages?

- How is Defect Density affected by software pro-
duction environmental issues?

- How is software to be tracked?

S nhd. FAOE

OF POOR QUALITY

'
b

g

Recommendations in Improving Software Reliability

¢ For Practitioners:

(1) Practitioners must apply the disciplines considered
o Softwarc Engincering. Techniques, methods,
wols, etc. as associated with planning, design,
development, testing (including verification and
validation), should be leamed and rigidly applied.

(2) Each software production (or maint¢nance) organ-
ization should develop and maintain a Software
Engincering Environment Process (SEEP). This
process should consist of all disciplines, ools, etc.
actually uscd in the production of the software -
including the measurcment systems, of which
software rcliability is a part.

(3) Pracutioners should develop a database of past
projects. The databasc should consist of such
informaton as: the environment that produced the
software, skill and types of personne! producing
the software, Defect Densitics, cte. This databasc
is 10 be uscd as a basis for a Softwarc Reliability
Mcasurement Program (SRMP) and positoning
for continuous improvement in Software
Engincering,

(4) A softwarc rcliability mcasurement program
(SRMP) should be put into place that consists of
mcasurcs that address both the scope of the
Softwarc Engincering Environment Process and
specific product relawed results. Mcasures should
consist of indicator measures, e.g., Test Coverage
and cstimator measures - modcels to estimate relia-
bility. The measurcment program should consist
of a methodology that addresses the use of the
models beginning with the "how 0" develop relia-
bility goals and ending with an approach of a pro-
ject post mortem. The previously mentioned data-
basc would maintain all data. The dawbasc would
provide for causal root cause analysis and proccss
improvement of the Software Engincering
Environmental Process.

¢ For Computer Scientist Rescarchers:

(1) Researchers are o develop and mainuin a
national database (sce above). The information
contzined in the database as previously noted
should contain both product and cnvironmental
information. Rescarchers should evaluae the
information in such a manner as (o detcrmince the

best practices, methods, required skills cic. to con-
tinuously improve software reliability.

(2) Rescarchers should provide standards on such
subjects as: language constructs, line-of-code
definitions, Function Point, etc.

(3) Researchers should determine minimum impacts
as o how to conclude with deriving "high
confidence” software reliability goals, elc.
Models are to be evaluated and maintained.

(4) Researchers should also determine education cur-
ricula for software cngineering enabling the con-
tinuous achicvement of high confidence reliable
software.

(5) Rescarchers should determine how 1o quantify
results from evaluating user’s nceds. These
results arc uscd as input into various diffcrent reli-
ability tools, models, ctc. as discussed carlicr.

(6) Rescarchers should establish and maintain a "Blue
Book for Softwarc Engincering.”

Concluding Comments

The world continues to embrace higher and higher levels
of technology. Software is at the heant of the demand
for complex features and functions which are packaged
to makc the complexity transparent to the cnd-uscr.
High confidence softwarc rcliability is in jcopardy.
Software Engincering processes that consist of discip-
lincs, tools, methods, etc. are not being utilized con-
sistenly. The scicnce of Software Engincering is not
being practiced.

A nced exists to focus on the basics; in the simplest form
of understanding software and Software Engincering.
Data needs to drive decisions. Ataining highly reliable
software - consisicntly - positioned through processes
for the purpose of improvement is essental. Research-
ers need to provide the "data driven” credibility in the
bascline evaluations of sofiwarc and software environ-
ments (and processes). Rescarchers need to see that the
appropriate Software Engincering disciplines are applied
- consistently and appropriately, evaluating the results,
and improving the disciplines and processes.

The disciplines exist in the form of Softwarc Engincer-
ing to produce rcliability software! The discipline and
formality requircd to achicve the results remain to be the
challenge! The solution is: “go BACK and apply the dis-
cipline TO get to THE FUTURE...”

